

Carbon Nanofibers for On-chip Interconnect and Integrated Circuit Applications

Quoc Ngo and Cary Y. Yang

Center for Nanostructures, Santa Clara University, Santa Clara, California 95050

qngo1@scu.edu, cyang@scu.edu

September 21, 2006

IEEE Santa Clara Valley Solid State Circuits Society Meeting

Outline

- Overview
- On-chip interconnects/vias
 - Synthesis
 - DC characterization
- Multi-layer structures
 - IC concepts using multi-layer CNF
- High-resolution microscopy analysis
- CNF-Cu composites for thermal management
- Continuing work

Overview

- On-chip interconnects to replace copper
 - Carbon nanofiber synthesis using PECVD
 - DC measurements of CNF arrays and multi-layer nanofibers
- Microstructural analysis
 - Sample preparation for TEM/STEM imaging
 - Elemental analysis (EDX)
- Thermal Interface Materials (TIMs)
 - Fabrication
 - Thermal resistance characterization

Motivation: Resistivity concerns

- Resistance copper interconnects and vias will soon be reached if scaling trends continue
- CNFs can meet both performance requirements for interconnects in next generation ICs

Motivation: Electromigration

- Electromigration is the failure of an interconnect line or via due to high current stress
- Main source of reliability failures in back-end structures

Saito et al., IEEE Trans. Elec. Dev. 51, 2129 (2004)

CNF Architectures:

Side-contacted geometry

- Contacts are either pre-patterned on the substrate, or deposited after the nanofiber or nanotube has been dispersed onto a substrate
- Contact is made on the sidewall

CNF Architectures:

End-contacted geometry

- Nanofibers are grown by plasma-enhanced CVD (PECVD) vertically from a patterned catalyst film
- Contact is made with ends of nanofibers

Current sensing AFM and SEM characterization *Center for Nanostructures*

Process flow for PECVD-grown CNFs

Li et al., *Appl. Phys. Lett*, **82**, 2491 (2003) Cruden et al., *J. Appl. Phys.* **94**, 4070 (2003)

CNF Process Control

DC Characterization of CNF Vias

Collaborators: J. Li, A. Cassell, M. Meyyappan Center for Advanced Aerospace Materials and Devices, NASA Ames Research Center, Moffett Field, CA

NASA i

Collaborators: A. J. Austin Center for Nanostructures, Santa Clara University, Santa Clara, CA

Santa Clara University

Mechanisms of End-contact Resistance

Single CNF Resistance:

- AFM tip to CNF (contact)
- CNF to metal underlayer
- Metal underlayer sheet resistance

Parallel CNF Resistance:

- Probe tip/metal to CNF(contact)
- CNFs to metal underlayer
- Metal underlayer sheet resistance

I-V Characteristics of CNF Array Vias

• A statistical approach can be taken for calculating resistance of a single CNF by measuring many CNFs in parallel

Ngo et al., *IEEE Trans. Nanotechnology* **3**, 311-317 (2004)

- Nanofiber diameters = 50-100nm
- •~5-6 CNF per 1µm²
- 100µm² contains ~500-600 CNF

R(single CNF) \approx 12-15k Ω

ITRS Roadmap for 32 nm node: $J_{MAX} = 4 \text{ MA/cm}^2$

Modeling of Temperature-dependent Resistivity

Ngo et al., *Elec. Dev. Lett.* 27, 221 (2005)

$$\rho(T) = \rho_0 + (\rho_a \sin^2 \theta) \exp\left(\frac{-E}{kT}\right) + (\rho_c \cos^2 \theta) \left(\frac{1}{gT^2 + \frac{b}{T^2 + c}}\right)$$

- Model incorporates both a-axis
 [1] and c-axis [2] graphite
 resistivity components
- Two fitting parameters, θ (complimentary cone angle) and ρ_0 (equilibrium resistivity) provide a good fit to the resistivity data
- •All other model parameters assume pure graphite values from measurements [1,2]
- [1] S. Ono et al., J. Phys. Soc. Jap. 21 (861) 1966[2] C. Uher et al., Phys. Rev. B 35 (4463) 1987

Cone-angle variation

- Cone angle $\alpha = (90-\theta) = 37^{\circ}$ extracted from the model equation
- Lower electrode influences resistivity, consistent with STEM analysis

I-V Characteristics of a single CNF

• Characterization of single CNFs using CSAFM confirms the result obtained from the statistical approach

Multi-layer CNF Structures

Collaborators: J. Li, A. Cassell, M. Meyyappan Center for Advanced Aerospace Materials and Devices, NASA Ames Research Center, Moffett Field, CA

500 nm

Process flow for CNF multi-layer growth

Second-layer Catalyst Deposition (I)

- Tubes are etched in NaOH solution to recess them into SiO₂ layer and expose -OH and -COOH groups at CNF ends
- Provides a good carbon electrode for selective Ni catalyst growth
- Deposition is optimized at -0.70V vs. SCE for 45-60 minutes

Second-layer Catalyst Deposition (II)

- Not all first layer nanofibers can form heterojunctions
- Some nanofibers are recessed deep in SiO₂ after NaOH etch (preventing Ni deposition)

Average Ni cluster size: 200nm

Second-layer Nanofiber Growth (I)

• Same PECVD growth conditions were used for second layer

First-layer CNF array growth

Second-layer CNF array growth

Second-layer Nanofiber

Summary of CNF Multi-layer Growth

- Ni cluster size can be well controlled using nickel nitrate Ni(NO₃)₂
 - Parameters: deposition potential, deposition time, nickel concentration
- Morphology of second-layer nanofibers depends on Ni cluster geometry
- Density of second-layer nanofibers is low

I-V Characteristics of Multi-layer CNF Array

Ngo et al., Proc. IITC 2005, 153-155

Masa

I-V Characteristics of Single Multi-layer CNF

Potential Multi-layer CNF devices

X. Yang et al., Nano Lett. 3, 1751 (2003)

Potential Multi-layer CNF devices

TEM/STEM Analysis of Individual CNFs

Collaborators: Y. Ominami, M. Suzuki Hitachi High Technologies America (HHTA) Pleasanton, CA HITACHI Inspire the Next

Collaborators: V. R. Radmilovic National Center for Electron Microscopy (NCEM) Lawrence Berkeley National Laboratory Berkeley, CA

STEM analysis of Ni-catalyzed CNFs (I)

- Nickel-catalyzed CNFs show stacked cone morphology
- Scanning Transmission Electron Microscopy (STEM) using Hitachi S-4800

STEM analysis of Ni-catalyzed CNFs (II)

• High-resolution STEM shows stacked cone morphology observed on the outer regions of CNF

TEM analysis of Pd-catalyzed CNFs

Secondary growth anomalies in Pd-catalyzed CNFs
 – [Ngo et al., *Carbon*, in press (2006)]

TEM image of secondary CNF growth

Energy Dispersive X-Ray Spectrum (EDX)

Sample Preparation

STEM (HD-2300) Images

The interface images of Ni-catalyzed CNF

Y. Ominami et al, Appl. Phy. Lett. 87, 233105 (2005)

- Clear unclear invisible
 TEM images are constructed by a convolution of transmitted electrons through both CNFs and materials around CNFs.
- Ion beam may destroy CNF structure in the process to make a thin foil (100nm or less) due to ion scattering in the foil.
- CNFs cannot be easily found in a prepared thin foil due to their small diameters. *Center for Nanostructures*

Solution

"Bottom-up sample preparation"

Ion milling **before** CNF growth

- No protective material around CNFs
- Applicable to other
 vertically grown materials,
 such as nanowires

Y. Ominami et al., *Ultramicroscopy* **106**, 597 (2006)

STEM images of CNFs on narrow strip

Center for Nanostructures

Comparison of preparation methods

Sample prepared by Conventional Sample Preparation

Sample prepared by Bottom-up Sample Preparation

CNF-metal contact interface

STEM (HD-2300) Images of Pd-catalyzed CNF

The interface images of Pd-catalyzed CNF

Y. Ominami et al, Appl. Phy. Lett. 87, 233105 (2005)

Structural Model

Ni-catalyzed CNF Pd-catalyzed CNF **Ni-catalyzed Pd-catalyzed CNFs** have **CNFs** have stacked **MW-like** graphitic layers **structure** near the CNFspanning the metal interface. entire CNF.

Resistance measurement using AFM

Institute	Fujitsu	Samsung	Infineon	SCU & NASA
Material	MWNT bundles	MWNT bundles	Single MWNT	Single CNF
Fabrication process	(a) SiO_2 Co Ti Cu (b) SiO_2 CvT Co Ti Cu (c) Cu Ti SiO_2 Via Co Ti Cu Ti SiO_2 Via Co Ti Cu Ti SiO_2 Via Co Ti Cu Ti Co	(85)" (85)" Solum Harry and Alex and Armenet		1 Metal Deposition 3 PECVD 4 TEOS CVD 4 TEOS CVD 5 CMP 6 Top Metal Layer Deposition
Via diameter [nm]	2000	700	20	50
Via height [nm]	350	1000	150-200	4000
R [Ω/via]	0.59	1.2 k	7.8 k	9 k (Pd), 13k (Ni)
Resistivity [$\Omega \cdot cm$]	2.1 X 10 ⁻³	4.6 X 10 ⁻²	1.4 X 10 ⁻³	4.4 X 10 ⁻⁴
Max. J [A/cm ² /via]	$> 2 X 10^{6}$		$> 5 X 10^8$	> 1 X 10 ⁷
Reference	Nihei <i>et al.</i> Jpn. J. Apl. Phys. 44, 1626 (2005)	Choi <i>et al.</i> IEEE NANO 2006	Kreupl <i>et al.</i> in IEDM 2004	Ngo <i>et al.</i> IEEE Electron Device Lett. 27, 221 (2006)

CNFs for Thermal Interface Materials (TIM)

Collaborators: B. A. Cruden, J. Li, A. Cassell, M. Meyyappan Center for Advanced Aerospace Materials and Devices, NASA Ames Research Center, Moffett Field, CA

Collaborators: Y. Zhang Nanoconduction Inc., Sunnyvale, CA

Ζ

Ngo et al., *Nano Lett.* **4**, 2403 (2004) Ngo et al., *Proc. ICCE-14* (2006)

Center for Nanostructures

um 300 nm

<u>Thermal Resistance of CNF-Cu Composite:</u> Power-cycling of CNF-Cu TIM

Ngo et al., Nano Lett. 4, 2403 (2004)

Thermal Resistance of CNF-Cu Composite:

Pressure-dependence of CNF-Cu TIM

Continuing Work

- Design and fabrication of new CNF interconnect test structures
- Additional via reliability measurements at high temperature
- Optimization of CNF-Cu TIM for improved thermal resistance
- Electrothermal modeling of thermal effects on electrical characteristics of carbon nanodevices

Thank You!

