Designing CMOS Wireless System-on-a-chip

David Su david.su@atheros.com Atheros Communications Santa Clara, California

Santa Clara SSCS

Outline

- Introduction
- CMOS Transceiver Building Blocks
 LNA and PA
- System-on-a-chip Integration issues
 Digital Assistance and Interference
- Conclusion

Santa Clara SSCS

SoC Trends: GSM (1995)

Integrated Transceiver with external components (e.g. filters)

Stetzler et al, ISSCC 95 (AT&T)

(c) D. Su

Santa Clara SSCS

September 2009 p.3

Bonnaud et al, ISSCC 06 (Infineon)

SoC with integrated transceiver and CPU.

(c) D. Su

Santa Clara SSCS

SoC Trends: WLAN (1996)

Prism WLAN chipset (Harris Semi) AMD App Note (www.amd.com)

(c) D. Su

Santa Clara SSCS

Advantages of SoC Integration

- Increased functionality
- Smaller Size / Form Factor
- Lower Power
 - On-chip interface
- Lower Cost
 - Single package
 - Ease of manufacture
 - Minimum RF board tuning
 - Reduced component count
 - → Improved reliability

Santa Clara SSCS

Cost of WLAN Throughput

Evolution of 802.11 WLAN PHY Rates

Single-chip Radio Block Diagram

Transceiver Block Diagram

- Signal Amplification
- Frequency Translation
- Frequency Selectivity

(c) D. Su

Santa Clara SSCS

September 2009 p.13

CMOS RF Design

Advantages

- Low-cost, high-yield
- Multi-layer interconnect makes decent inductors
- High-level of integration supports sophisticated digital signal processing

Challenges:

- Multi-GHz: narrowband design with inductors
- No high-Q BPF: architecture + dynamic range
- Process/Temp Variation: DSP algorithms
- Reduced supply headroom: IO devices
- Noise coupling: careful design & layout

Santa Clara SSCS

Tuned CMOS RF Gain stage

Use of Inductor → Narrowband tuned circuit with higher gain

(c) D. Su

Santa Clara SSCS

September 2009 p.15

LNA Design Goal

- Low Noise Figure
 - Sufficient gain
- Able to accommodate large blockers
 - Large Dynamic Range
 - Large Common-mode Rejection
 - High Linearity

Santa Clara SSCS

LNA with Switchable Gain

Linear PA for High Data Rate

Modern digital modulation attempts to transmit at highest data rate within a given signal bandwidth.

- Nonlinear PA: Information in phase only. Transmit with constant envelope for power efficiency – GSMK, FSK
- Modestly Linear PA: Information in phase only. Reduce signal bandwidth with non-constant envelope signal – π/4 QPSK, OQPSK
- Linear PA: May encode information in both amplitude and phase. Non-constant envelope; high SNR – 64 QAM

(c) D. Su

Santa Clara SSCS

September 2009 p.19

PA Peak to Average Ratio

- Improved spectral efficiency (higher bits per Hz)
 - \rightarrow Large peak to average ratio
 - → reduces power efficiency of the PA
- Example: 802.11a/g OFDM has PAR of 17dB
 - Class A efficiency of ~ 1%
 - Infrequent signal peaks
 - 16-QAM OFDM, PAR of 6dB degrades SNR by only 0.25dB*
 - → Class A Efficiency ~ 12%
 - 64-QAM OFDM, PAR of 12dB is needed
 → Class A Efficiency ~ 3%

* Van Nee & Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000

(c) D. Su

Santa Clara SSCS

Linear Design

- Design for P_{SAT} = P_{AVE} + PAR + ...
 Low R output match
- Stability
 - Cascoding
- Linearity
 - Avoid V_{GS} overdrive
 - Inter-stage capacitive level-shift

(c) D. Su

Santa Clara SSCS

September 2009 p.21

Santa Clara SSCS

Santa Clara SSCS

Leveraging Integration for RF PA

Transistors are cheap.

- LARGE Output Power: Nonlinear PA
- HIGH Efficiency: Nonlinear PA
- GOOD Linearity: Use linearization circuits so that the output stage does not need to be linear.

SOLUTION: Switched-mode (non-linear) output stage + linearization.

(c) D. Su

Santa Clara SSCS

September 2009 p.25

PA Linearization

- Concept:
 - Use efficient nonlinear PAs for amplification
 - Techniques to improve linearity
- An active research area for over half a century! Some examples:
 - Feedforward
 - Predistortion
 - Cartesian feedback: Rectangular I-Q
 - Outphasing / Chirex / LINC: Phase-Phase
 - Polar: Phase-magnitude, EER
 - ... (many many more)

Santa Clara SSCS

Santa Clara SSCS

Digitally Modulated Polar Power Amplifier

Digitally Modulated Polar Power Amplifier

Integrating RF Tx/Rx Switch in CMOS

 MOS pass transistors as switches has too much loss and may not be able to support required voltage breakdown

(c) D. Su

Santa Clara SSCS

Integrated RF Tx/Rx Switch LNA M2 -b2 **Tx Mode** Tx/Rx Switch M1 ᅪ -b1 LNA_{IN} PA_{OUT} M3 ┓⊢ -b3 Transmit output power = 20dBm (< 1dB loss) οPA_{IN} M Chang et al, ISSCC 2007 (Atheros)

Chang et al, ISSCC 2007 (Atheros) (c) D. Su

Santa Clara SSCS

System-on-a-Chip Integration

- ✓ Digital Assistance: Calibration Techniques
- Digital Interference: Noise Coupling

(c) D. Su

Santa Clara SSCS

September 2009 p.35

Digital Assisted Analog Design

(c) D. Su

Santa Clara SSCS

Digital Assistance: Calibration Issues

- Digital logic to compensate/correct for imperfections of analog and RF circuits can enable:
 - Lower power, smaller area, improved reliability of analog/RF
- Desired properties of calibration:
 - Independent of temperature, aging, frequency
 - Inexpensive (in area and power) to implement
 - Do not interfere with system performance
- Wireless SoC advantage:
 - Calibration building blocks already exist on-chip: transmitter and receiver, data converters, and CPU
 - No package pin limitation

(c) D. Su

Santa Clara SSCS

September 2009 p.37

Calibration Techniques

- > Test Signal
 - Dedicated test signals from DAC: Tx carrier leak
 - RF loop back: Receive filter bandwidth
 - Thermal noise: Rx Gain
 - Live Rx (signal) traffic: Rx I/Q mismatch
- > Observation Signal
 - Dedicated ADC
 - Implicit ADC: Comparator
- > Tuning Mechanism
 - Dedicated DAC
 - Implicit DAC:

Selectable capacitors, resistors, transistors

Santa Clara SSCS

RF loop back: Tx Carrier Leak

(c) D. Su

Santa Clara SSCS

September 2009 p.39

Calibrating Low-pass gm-C Filter

System-on-a-Chip Integration

- Digital Assistance: Calibration Techniques
- ✓ Digital Interference: Noise Coupling

(c) D. Su

Santa Clara SSCS

September 2009 p.41

Santa Clara SSCS

Digital Interference: Noise Coupling

Aggressor

(c) D.

Noise Source

Pacify the aggressor

- Reduce noise by turning off unused digital
 - Clock gating
 - Avoid oversized digital buffers
- Stagger digital switching
 - Avoid large number of digital pads switching simultaneously
 - Avoid switching digital logic at the same sampling instance of sensitive analog

Santa Clara SSCS

September 2009 p.44

3

Noise Destination

Strengthen the victim

- Increase immunity of sensitive analog and RF circuits
 - Common-mode noise rejection:
 → Fully differential topology
 - Power Supply noise rejection:
 → Good PSRR
 - → Dedicated on-chip voltage regulators
- Avoid package coupling by keeping sensitive nodes on chip (Example: VCO control voltage)

(c) D. Su

Santa Clara SSCS

September 2009 p.45

Coupling Mechanism

Deter the accomplice

- Supply noise coupling
 - Separate or star-connected power supplies
- Capacitive or inductive coupling to sensitive signals and bias voltages
 - Careful routing of signal traces to reduce parasitic capacitive/inductive coupling
 - Use ground return-path shields

Santa Clara SSCS

Coupling Mechanism (Cont'd)

· Epi vs non-epi substrate

Substrate coupling induced V_{TH} modulation

- Low-impedance substrate connection
- Guard rings
- Physical separation
- Deep Nwell

(c) D. Su

Santa Clara SSCS

September 2009 p.47

Frequency Synthesizer

Conclusions

- CMOS has become the technology of choice for integrated radio systems
- Integrating a radio in mixed-Signal System-on-a-Chip is no longer a dream but a reality
- Wireless SoC can provide significant advantages in size, power, and cost

(c) D. Su

Santa Clara SSCS

September 2009 p.49

Continuing Challenges

- Multi-mode radios to support several wireless standards
- RF design in scaled CMOS
 - Reduced supply voltage: voltage, current, time
 - nanometer transistors: leaky, low gm.ro
 - How to reduce analog/RF area and power: less analog and more digital
- Challenge of radio designers will still be:
 - Power consumption / Battery life
 - Range
 - Data rate
 - Cost

Santa Clara SSCS

Acknowledgments

 Many of the slides are based on previous presentations from Atheros Communications and Stanford University, especially those by:

Manolis Terrovitis, Srenik Mehta, William Si, William McFarland, Lalitkumar Nathawad Richard Chang Amirpouya Kavousian

(c) D. Su

Santa Clara SSCS