
Overview of 
CMOS Device Behavior and Modeling 

for Mixed-Signal/RF Circuit Design

Yuhua Cheng

Siliconlinx, Inc.
Bridging the gap between IC designers and foundries



2 Yuhua Cheng

________________________________Outline

• CMOS Technology Trends

• Device Behavior Overview

• Device Modeling Challenges

• Figures of Merit and Model Validation

• Summary



3 Yuhua Cheng

________________________________
• CMOS has been in nanoscale era.

• Silicon CMOS is still the 
mainstream IC technology in the 
next 7-10 years before other
nano devices play roles.
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________________________________Semiconductor Industry (SI) Trend
PC -> Communication (wireless)

Intel Inside Communication Everywhere

• The data of voice, 
video and other 
information will be 
exchanged through 
any media at any 
time and any places 

by wireless devices!
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________________________________SI Trend (CONT.)
IC -> Application Integration

– The revenue ratio of the system chip to overall semiconductor 
industry will increase to 21.9% (with a total revenue of 65.6 
billions) in 2008 from 16.6% in 2002

– Product integration is to integrate different products such 
smart phone, camera, cell phone, PDA, TV, music player, based 
on one platform such as cell phone. 

– The integration of end market will be the merge of markets 
such as computer, consumer, wired and wireless 
communications.
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________________________________CMOS Technology Trends -- RF CMOS
• Recent speed improvements and better noise behavior of 

CMOS transistors have made it feasible to implement RF 
circuits for wireless products, such as cell phones, Global 
Positioning System, and Bluetooth.

• CMOS is one of the best suitable technologies to ingrate 
RF circuits with analog and base-band digital circuits.

• Tremendous  research effort is dedicated to RF CMOS, 
driven by System-on-Chip (SoC).

CMOS:
High integration 
density
High yield
Low power consumption
Low cost
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________________________________An Illustration of RF SoC on CMOS

K. Muhammad et al. “Digital RF Processing: Toward Low-Cost Reconfigurable Radios,” 
IEEE Communication Magazine, Vol. 43, pp. 105-113, 2005.

• RF SoC - Integrate a 
chipset system onto a same 
chip:

• RF Front End (RFFE)
• Analog Based-band 
(ABB)
• Power Management and 
Audio Codecs (PMAC) 
• Digital Base-band (DBB)

• RFCMOS implementation 
challenges:

• low cost
• high performance
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________________________________

Need to Well Understand 
the Device Behavior in 
Advanced Technology 

Nodes

Need to Develop Physical 
and Accurate Device 

Models for RF/Analog 
Design

Design IC in Nano-scale/RF Era
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________________________________MOSFET High Frequency Behavior
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• Today’s MOSFETs show high Ft and low NF

(Yuhua Cheng, “Challenges in Bridging Manufacturing and Design for RF applications-An Overview of 
Advanced Device Modeling for RF Circuit Design”, RFIC/IMS workshop, June 2004)
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________________________________Leakage in Different Technology Node

• Leakage increases significantly as 
technology advances.

0 20 40 60 80 100 120 140 160
10-1

100

101

102

103

104

0.25µm

0.18µm

0.13µm

90nm

J of
f (n

A/
µm

2 )

Temperature (oC)
(Yuhua Cheng, “Challenges in Bridging Manufacturing and Design for RF applications-An Overview of 

Advanced Device Modeling for RF Circuit Design”, RFIC/IMS workshop, June 2004)



11 Yuhua Cheng

________________________________MOSFET Gate Leakage
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• In today’s MOSFETs,  gate leakage increases by 
orders for the decrease of Tox

(Yuhua Cheng, “Challenges in Bridging Manufacturing and Design for RF applications-An Overview of 
Advanced Device Modeling for RF Circuit Design”, RFIC/IMS workshop, June 2004)
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________________________________
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• A trade-off between IDsat and Ioff.
• Better device design and material selection to reduce the slope 

of the universal curves.

Better 
Device 
Design
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________________________________Layout Dependent Device Performance

• Effects different to nfet and pfet.
• Impact both digital (changing drive current) and 

analog (changing both Gm and matching).

(C. H. Diaz et al., “Process and circuit design interlock for application-dependent scaling tradeoffs and optimization in 
the SoC era,”, IEEE J. of Solid-State Circuits, Vol. 38 , Pages:444–449, 2003)
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________________________________Layout Dependent Device Performance (CONT.)

• Irregular device layouts are used in digital (even analog) cell 
libraries.

• The layouts of the devices in the cell libraries may be 
different from those for device modeling

(C. H. Diaz et al., “Process and circuit design interlock for application-dependent scaling tradeoffs and 
optimization in the SoC era,”, IEEE J. of Solid-State Circuits, Vol. 38 , Pages:444–449, 2003)
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________________________________HF Behavior – Parasitic Effects
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• Parasitic components need to be well understood at HF.
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________________________________HF Behavior: Effective Rg
• Effective RG extracted by:

• Effective RG does not follow 
equation below when Lf is 
long:

• Significant increase in 
effective RG due to non-
quasi-static (NQS) effect.
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(Yuhua Cheng et al., “High frequency characterization of gate 
resistance in RF MOSFETs”, IEEE Electron Device Letters , 
Vol. 22, pp. 98-100,  2001.)
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________________________________HF Behavior: NQS Effects (1)
• Effective Gm, normalized:

• Short L, Gm is 
“constant” over f.  

• Longer L, Gm becomes 
frequency dependent; 

• The longer the L, the 
stronger the frequency 
dependence.
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(Yuhua Cheng et al., “Frequency-dependent resistive and capacitive 
components in RF MOSFETs ,” IEEE Electron Device Letters , 
Vol. 22,  pp. 333 –335, July 2001.)
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________________________________HF Behavior: NQS Effects (2)
• Effective Gate Capacitance 

Cgg,eff:

• Short L,  Cgg,eff is “constant”
over f.

• Longer L, Cgg,eff becomes 
frequency dependent. 

• The longer the L, the 
stronger the frequency 
dependence.

ω
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• (Yuhua Cheng et al., “Frequency-dependent resistive 
and capacitive components in RF MOSFETs ,” IEEE 
Electron Device Letters , Vol. 22,  pp. 333 –335, July 
2001.)
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________________________________HF Behavior: Substrate Coupling
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Signal at the drain coupling  to the nearby source diffusions and 
to the substrate terminal through the junction capacitance and 
substrate resistance

• At HF, signal is coupled to substrate through 
junction capacitance.

• This effect impact mainly the output impedance.
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________________________________HF Behavior: Bias and f Dependence of Rsub
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• Substrate resistance is a very weak function of biases at the gate 
and drain.

• Up to 10GHz, substrate resistance is not sensitive to frequency.

(Yuhua Cheng et al., “On the high-frequency characteristics of substrate resistance in RF MOSFETs ” IEEE Electron 
Device Letters , Vol. 21, Page(s): 604 –606, 2000 )
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________________________________HF Behavior: Thermal Noise

• HF noise reduces as the technology advances (and 
shorter L).

• Higher Gm, lower HF noise.
• Low Nf (<1dB) can be obtained  at normal gate  biases.

(Jamal Deen, Chih-Hung Chen; Yuhua Cheng; “MOSFET modeling for low noise, RF circuit design” Proceedings of the 
IEEE 2002 Custom Integrated Circuits Conference, pp. 201 – 208, May 2002. )
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________________________________HF Behavior: Induced Gate Noise

• Channel noise is frequency independent and induced 
gate noise is frequency dependent.

• Induced gate noise is not negligible in devices with long 
L or devices with short L but at very high frequency.

(Jamal Deen, Chih-Hung Chen; Yuhua Cheng; “MOSFET modeling for low noise, RF circuit design” Proceedings of the 
IEEE 2002 Custom Integrated Circuits Conference, pp. 201 – 208, May 2002. )
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________________________________HF Behavior: High “Low Frequency Limit”

(Tzung-Yin Lee, and Yuhua Cheng, “High-Frequency Characterization and Modeling of Distortion 
Behavior of MOSFETs for RF IC Design”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 
VOL. 39, NO. 9, pp. 1407 – 1414, 2004.)
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• MOSFET has much higher “low frequency limit” (LFL)
• HF distortion characteristics (<fLFL) can be described 

by its low-frequency behavior
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________________________________Device Modeling for RF Applications 

• Device Modeling at HF should at least include the 
modeling for:
– MOSFET
– Passive devices (R, C, inductor,varactors)
– Special devices (LDMOS and PNP BJTs)
– Interconnect
– Substrate
– Circuit blocks (behavior modeling)

• Today, we will mainly talk about MOSFET modeling.
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________________________________MOSFET Modeling Challenges
• Core model with good continuity, accuracy and scalability over 

wide biases, temperatures and geometries.

• Modeling of classic well-known short channel and narrow width 
effects and recent advanced physical effects such as velocity 
overshoot, self-heating, channel charge quantization, tunneling, 
layout dependent behavior, …

• Scalable  parasitic capacitance and resistance models.

• Predicts accurately the  small signal AC and noise and the 
distortion behavior.

• Non-quasi static (NQS) effects.

• Statistical modeling
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________________________________Modeling Challenges – Gm & Gm/ID

• Gm, the most important parameters in analog design.
• Gm/ID, a universal characteristic of MOSFETs to evaluate the 

transconductance efficiency.
• Inversion Coefficient (IC), ratio of ID/IS, is proposed as a 

measure of MOS inversion level. 
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(Yuhua Cheng, "A study of figures of merit for the high frequency behavior of MOSFETs in RF IC applications", 
Eighth International Conference on modeling and Simulation of Microsystems, Anaheim, May 8-12, 2005)
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________________________________Modeling Challenges - Capacitance 

• Gate Capacitance is not constant in strong inversion. 
• Bias dependence is caused by Poly-depletion effect.
• Both poly-depletion (PD) and channel quantization 

(CQ) effects will impact Cgg.
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________________________________Modeling Challenges – Scalable Rsub

Signal at the drain coupling  to the nearby source diffusions and to the 
substrate terminal through the junction capacitance and substrate resistance
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• Rsub should be scalable in terms of 
channel width, length and fingers.

• All parameters should be extracted 
easily. 

(Yuhua Cheng, “An Overview of Device Modeling in Bridging Manufacturing 
and Design for RF applications”, International Conference on Solid-
state Integrated Circuits and Technologies, D4.3-1 – D4.3-6, Beijing, 
China, Oct 2004 )
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________________________________Modeling Challenges - NQS Effects
• NQS will significantly 

impact Y11 and Y21
behavior.

• Many approaches are 
proposed to model 
this effect:
– Multi-segment 

approach
– Relaxation time 
– Rg/Ri equivalent 

circuit approach
• Efficient built-in 

NQS effect in 
intrinsic core model 
is preferred. 
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________________________________Modeling of  Flicker noise

• Downscaling may degrade flicker noise behavior.
• Modeling of flicker noise in nano-scale devices becomes 

more challenging.
• Accurate prediction of corner frequency, Fcorner, is 

critical for circuit design.
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________________________________Modeling Challenges – HF Noise

• Parasitic resistance at gate, source, drain and substrate generate 
thermal noise

• Channel thermal noise is the dominant noise source at HF.
• Understanding  of noise sources is important.
• Modeling of channel thermal noise and induced gate noise is the most 

challenging job.
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________________________________Statistical Modeling
• Process variation (even within a wafer) in today’s 

advanced technologies becomes more significant.

• Need physical statistical models to predict process 
variation and local mismatch to optimize analog/RF 
circuits with high yield.

• Correlations between statistical modeling with 
considerations of both frontend and backend process 
variations and yield modeling/prediction should be 
developed.

• In nano-scale technologies, statistical model is more 
meaningful than traditional corner models.
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________________________________RF Modeling in Nano-scale Era

Modeling of Small Signal, Noises, 
Large Signal Distortion

For RF Applications

Continuity Scalability Accuracy

Computation
Efficiency

New 
Physical Effects
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________________________________Gm/ID: Measured vs. Fitted

• Gm/ID has been proposed a FoM for model validation 
for analog applications.
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________________________________fT: Measured vs. Fitted

• A standard device parameter for model validation.
• However, only fT  is not enough to describe HF behavior of

MOSFETs, especially at technology nodes such as 0.13um and 
below.
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________________________________Gmax and fmax: Measured vs. Fitted

• fmax contains the impacts from parasitics such as 
gate and substrate resistance and is a better FoM
than fT
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________________________________C-parameters: Modeled vs. Fitted

• C-parameters are more sensitive to the bias 
dependence of gate resistance and capacitance.

• Useful FoMs for model validation.
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________________________________Large Signal Behavior: Measured vs. Fitted

• Below certain (the “LFL”) frequency, the distortion behavior of 
MOSFETs is primarily determined by transconductance and 
capacitances.

• With careful parameter extraction at DC and HF small signal,  a 
model can well predict the large signal distortion behavior.
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________________________________

Validate Models 
Based On Meaningful 

Figures-of-Merit 

Something worth mentioning in RF Modeling



40 Yuhua Cheng

________________________________Summary

• While all the requirements for continuity, scalability, accuracy and 
computation efficiency need to be met for device models for circuit 
simulation, the new physical effects in nano-scale devices make 
compact model development very challenging.

• A lot of additional modeling efforts to predict HF noise and large 
signal distortion behavior are needed for RF circuit design. 

• It would be desirable in the future the modelers use certain FoMs 
at HF to qualify the device models targeted for analog/RF 
applications.

• Device modeling has become very critical component in the 
technology platform for RF SOC design in nano-scale technologies.
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