Advanced Integrated Circuits and Systems Laboratory

Dr. Valencia Joyner Assistant Professor vjoyner@ece.tufts.edu

> McMaster University 6 June 2007

- Tufts ECE Highlights
- Overview of Lab Research Thrusts
- Broadband Optical Wireless
 Communication
- Flip-Chip Integrated Optical Receivers
- Research Areas of Interest
- Conclusions

Tufts ECE Department Highlights

People

- 11 Faculty, 9 Adjunct Faculty
- 55 UG, 22 Grads
- Research Areas:
 - Analog/Mixed-Signal VLSI
 - Audio Engineering
 - Control Theory
 - Digital Signal & Image
 Processing
 - Fault Simulation
 - Information Coding and Theory

- Microwave Theory & Techniques
- mm-Wave Measurements
- Nanoscale Circuits & Systems
- Optical/RF Comms
- Plasma Engineering
- Sensor Electronics

Principal Investigator

- MPhil and PhD, University of Cambridge (UK), 2003
 - Thesis: Integrated Circuit Design for Wireless Network Receivers
 - 1999 Marshall Scholar
 - NSF Graduate Research Fellow
 - 1999-2003 St. John's, Cambridge Scholar
- Assistant Professor, Tufts University, 2005-present
- VLSI Research Engineer, Information Sciences Institute, April 2004 – Sept. 2005
 - DARPA Radiation-Hardening-By-Design (RHBD) Program
 - Developed process monitor chips to track the radiation tolerance of commercial silicon processes (TF 130nm CMOS)
 - Novel RHBD techniques for implementation in silicon technologies

Current Students and Affiliates

- 2 MS, 2 PhD
- Visiting Research Scholar, Beijing Microelectronics Institute

Integrated Circuit Design Curriculum

- EE103 Introduction to VLSI Design
- EE147 Analog and Mixed Signal MOS IC Design
- EE194 Devices and Circuits for Optical Communications
- EE148 Silicon Radio Frequency IC Design
- EE294 Advanced Analog Integrated Circuits
- EE117 Introduction to Microwave Devices
- EE118 Microwave Semi Devices and Circuits

- Extensive laboratory work using industry standard design tools (Example: Cadence tools, Agilent ADS, Ansoft HFSS)
- Final projects address real world design problems:
 - System to Silicon implementation
 - Chips fabricated by MOSIS in AMI 0.5u CMOS process
 - PCB design and testing part of the curriculum

Tufts Advanced Technologies Lab

- Shared Interdisciplinary Facility
 - Sensors and Instrumentation Lab
 - ✓ Micro/Nano Fab
 - Biomimetic Devices Lab
 - ✓ Soft Materials
 - ✓ Tissue Engineering
 - ✓ Soft-Bodied Robots
 - Nanoscale Circuits Lab
 - ✓ Advanced Integrated Circuits and Systems Lab

Test and Measurement Facilities

DC and High Frequency Environment

- Agilent 8510C Network Analyzer
- Anritsu MP1800A 12.5Gb/s Signal Quality Analyzer
- Agilent E4408B Spectrum Analyzer
- RF Cascade Probe station for die level testing
- Agilent and Instek Precision power supplies
- Agilent Precision digital multimeters
- Agilent High Bandwidth Mixed-Signal Oscilloscopes 54855A DSO
- Agilent High Speed Logic Analyzers 16702B
- Agilent Arbitrary Function Generators 8648B
- Weller Soldering Workstation
- ESD protected work-area

Optical Workbench for Testing and Characterization

- 10Gb/s, 1550nm Electro-optic Absorption Modulator
- Fiber Coupled Laser Source 1550nm, 1.5mW and Collimator
- Fabry-Perot Laser Diode and TEC Controller (200mA, 16W)
- Si and InGaAs photodetectors
- Optical breadboard, posts, mounting bases, and lens mounts
- Thorlabs Power Meter System with Ge Sensor
- Thorlabs XYZ Translation Stage
- Polarized HeNe Laser System

Lab Research Thrusts

Broadband Optical Wireless Links

 Multi-Gb/s, Low-power optical transceivers for secure, high-speed data/sensor communication

Biomedical Imaging

- Imaging Receivers for frequencydomain optical mammography
 - Integrated microarrays for fluorescence detection

Optoelectronic Integrated Circuits

RF and Optical Networks

 High Performance ICs for integration of microwave wireless with the optical fiber backbone

Future Generation Communication Systems

21st Century Military/Commercial Communications will require network solutions combining wired and wireless systems

Networked Manned and Unmanned Systems

See *anything*... From *anywhere*.... At *anytime*...

Free-Space Optical Communications brings added security and capacity

* Dr. Steve Pappert, DARPA-MTO, "Electrons & Photons: You need both", March 2007

Why Optical Wireless?

<u>RF</u>

- Highly Regulated Spectrum → Low data rates (10s of Mb/s)
- High User Mobility, Long Range
- High Rx Sensitivity
- No obstruction

<u>Optical</u>

- Unregulated THz channels
- No EMI → Secure Channels
- WDM → Higher Aggregate Capacity
- Baseband Processing → Low-Power Compatibility
- LOS channels prone to blocking

Realistic optical wireless deployments that will deliver on the promise of the technology will require reconfigurable, ad-hoc mesh networks with multi-point/hybrid transceivers

Integrated System-in-Package Microsystems for Optical Wireless Metworks

Metamaterials and PhC for beam steering, filtering, waveguiding

III/V devices allow higher transmit powers and hybrid flip-chip integration

III/V Optoelectronic Device Arrays

CMOS: Sensitive analog circuits integrated with low-power back-end digital processing circuits

CMOS Transceiver, Signal Processing, CDR

Ceramic Package

Cellular Optical LAN Approach

4-yr Research Partnership with promising results

- Integrated transceiver components
- Imaging optics to implement tracking
- Eye safe 1.3 1.5µm optical transmission

Receiver Design Challenges

Overall System Performance limited by Rx Bandwidth and Noise:

- Allowed Tx power level at 1550nm is 20x greater than at 880nm for Class 1 eye safety BUT
 - Long λ detectors have high C (typically 40-50pF/mm2)
 - Difficult to focus incoming radiation to allow small high bandwidth detectors
 - Typical design approaches for fiber-based receivers may not be
 optimal (C~50-100fF)

Receiver Design Challenges

- Single element detector
 - \rightarrow Large area for coverage
 - Poor bandwidth
 - Ambient noise
 - Noise performance degradation

Transimpedance Amplifier:
➢ For a given BW and Cin, achieves higher gain and better noise performance

$$f_{BW} \approx \frac{1 + A}{2\pi \cdot R_f C_{\rm pd}}$$

Receiver Subsystem

Selector/Combiner Circuit

CMOS Imaging Diversity Receiver

- Selector/Combiner Circuit
 - Analog Signal Processing Circuits
 - Enables diversity combining increasing output SNR
- Flip-Chip:
 - III-V devices with low cost, low-power CMOS
 - Scalability

Segmented receiver chip to account for variable device yield

CMOS Receiver Chip

Alcatel 0.7µm CMOS

Post-processing & bump placement by PacTech

100µm Sn-Pb bumps

TIA Preamplifier Electrical Characterization $f_{-3\,db}$ =155 MHz Gain = 72.2 dB Ω Sens=-30 dBm @ BER=10⁻⁹ $(C_{pd}$ =6-10pF)

Photodetector Device

Flip-Chip Integration

Opto-Mechanics Integration

Selector-Combiner Results

24

Channel Weighting over 10dB range Unable to measure power at each channel

>1 Gb/s Operation in CMOS

Input Noise=14pA/rtHz @ 500MHz

Common-Source

What is the optimal gain stage A for Stability and Power dissipation in CMOS?

Self-Biased AGC Front-End Amplifier

OW "mesh" require high dynamic range Rx ✓ Multipoint reception ✓ Accommodate variable link distance, signal amplitude, modulation formats

Technology	0.5µm AMI CMOS	
DC Gain	$50 dB\Omega - 38 dB$	
-3-dB Bandwidth	345MHz	
Power Dissipation	106mW	
Input Capacitance	6pF	
Chip Area	270µm x 125µm	
Input Referred Noise	12.5pA/√Hz	

1-Gb/s Automatic Gain Control TIA with Common-mode Feedback

Gain Control achieved by tuning the resistance at the output
Control determined by on-chip peak detection circuit

AGC TIA Summary

Technology	0.5µm AMI CMOS	
DC Gain	53 dB Ω – 38 dB	
-3-dB Bandwidth	436.2MHz @ 5pF 548.8MHz @ 0.5pF	
Power Dissipation	41.3mW	
Chip Area	190µm x 160µm	
Input Referred Noise	27.3pA/√Hz @ 5pF 14.2pA/√Hz @ 0.5pF	

By: Yiling Zhang, MS candidate

1-Gb/s 30dB Limiting Amplifier with Active Inductor

Limiting Amplifier Summary

Technology	AMI $0.5 \mu m$		
Supply Voltage	3.3V		
Power Dissipation	130mW		
Chip Area	$232 * 320 \mu m^2$		
DC gain	30dB		
	Schematic	Post Layout	
Bandwidth(-3dB)	940MHz	695MH	
Data Bits	1.34Gb/s	1Gb/s	
Input Noise	-	$766 pv/\sqrt{Hz}$	

By: Ruida Yun, PhD candidate

Biomedical Imaging

CMOS Imaging Rx Chip CMOS photodetectors Low-noise frontend for high sensitivity (nW) On-chip phase detection (<1 deg) AGC receiver to avoid optical overload

Integrated Micro-arrays for Fluorescence Detection

Silicon-based micro-arrays for high-throughput diagnostics and screening.

o How can circuit techniques for optical comms. enhance the detection process and increase sensitivity and selectivity?

o What types of photonic materials are best for integration with CMOS and for contact with living cells?

Related Projects

- Flip-chip Integrated Imaging Diversity Receivers
 - In collaboration with AFRL which provides expertise in custom InGaAs detector arrays with minimum pixel size of 15um x 15um.
 - Developing architecture for 24 x 24 CMOS imaging diversity Rx
- Multipoint CMOS Receiver Architectures for Optical Wireless Mesh Network Topologies
- Current-mode signal processing approaches to optical diversity combining

Conclusions

- Review of key design aspects of free-space optical links for broadband wireless communication.
- Presented the design and experimental results for a flip-chip integrated, imaging diversity receiver for use in a free-space optical link operating at 310 Mb/s.
- Demonstrated channel selection and equal gain combining.
- Presented design of a TIA accommodating 6pF detectors and implemented in 0.35um CMOS with good eye diagrams up to 1Gb/s.
- Presented design of a self-biased AGC TIA for use highly varying free-space optical channels.

THANK YOU

