

Power-trains for "More" Electric Road Vehicles

Dr. Nigel Schofield

Professor, Department of Electrical and Computer Engineering

McMaster University, Canada

Department of Electrical and Computer Engineering McMaster University, Canada

- 1 Background to "more electric" vehicle concepts
- 2 Vehicle power-train power- and torque-speed requirements
- 3 Machine and power electronics
- 4 Vehicle integration considerations
- 5 Energy sources
- 6 Summary

Early electric road vehicle

Department of Electrical and Computer Engineering McMaster University, Canada

Electric road vehicle infrastructure

Electric vehicle and electrolytic rectifier charging station

Department of Electrical and Computer Engineering McMaster University, Canada

Hybrid or 'More-electric' road vehicles

Department of Electrical and Computer Engineering McMaster University, Canada

Automotive applications of electrical machines and drives

Note: Installed electrical capacity projected to rise to 15kW over next 5 years (simple sum:- 15kW/12V = 1250A)

University

'More electric' automotive drive-trains

Department of Electrical and Computer Engineering McMaster University, Canada

Fleet Conversions

3.5 tonne delivery vehicles

7.5 tonne delivery vehicles

Courtesy of Smith EV, Washington, UK

Department of Electrical and Computer Engineering McMaster University, Canada

7.5 Tonne All-Electric Delivery Vehicle

Courtesy of Smith EV, Washington, UK

Department of Electrical and Computer Engineering McMaster University, Canada

Vehicle kinematics and power-train rating

Department of Electrical and Computer Engineering McMaster University, Canada

Expressing the wheel and traction machine angular velocities in terms of the vehicle linear velocity yields:

$$\omega_w = \frac{v}{r_w} \qquad (4) \qquad \qquad \omega_m = n_t \frac{v}{r_w} \qquad (5)$$

From which the machine torque equation can be expressed in terms of the vehicle linear velocity by substituting eqns.(1, 2, 4 and 5) into eqn.(3):

$$T_{m} = \left[\left(\frac{n_{t} J_{m}}{r_{w}} \right) + \left(\frac{J_{w}}{n_{t} \eta_{t} r_{w}} \right) + \left(\frac{d_{f} r_{w} m}{n_{t} \eta_{t}} \right) \right] \frac{dv}{dt} + \frac{d_{f} r_{w}}{n_{t} \eta_{t}} \left[\left(k_{r} \cos \theta + \sin \theta \right) mg + \frac{1}{2} \rho C_{d} A_{f} v^{2} \right]$$

$$\tag{6}$$

Mechanical power is torque multiplied by mechanical speed :

$$P_m = T_m \omega_m \tag{7}$$

Department of Electrical and Computer Engineering McMaster University, Canada

Expressing the wheel and traction machine angular velocities in terms of the vehicle linear velocity yields:

$$\omega_w = \frac{v}{r_w} \qquad (4) \qquad \qquad \omega_m = n_t \frac{v}{r_w} \qquad (5)$$

From which the machine torque equation can be expressed in terms of the vehicle linear velocity by substituting eqns (1, 2, 4 and 5) into eqn.(3):

$$T_{m} = \left[\left(\frac{n_{t} J_{m}}{r_{w}} \right) + \left(\frac{J_{w}}{n_{t} \eta_{t} r_{w}} \right) + \left(\frac{d_{f} r_{w} m}{n_{t} \eta_{t}} \right) \right] \frac{dv}{dt} + \frac{d_{f} r_{w}}{n_{t} \eta_{t}} \left[\left(k_{r} \cos \theta + \sin \theta \right) m_{\theta} + \frac{1}{2} \rho C_{d} A_{f} v^{2} \right]$$

$$\tag{6}$$

Mechanical power is torque multiplied by mechanical speed :

$$P_m = T_m \omega_m \tag{7}$$

Department of Electrical and Computer Engineering McMaster University, Canada

NEDC vehicle reference driving cycle

Cycle consists of :

Cycle duration (s)

- 4 x ECE15 standard driving cycles with enhanced acceleration
- 1 x ECE sub-urban cycle

Dynamic power over NEDC driving cycle

1.5 tonne vehicle on zero road gradient

Department of Electrical and Computer Engineering McMaster University, Canada

Traction machine torque vs. time

Traction machine torque - speed for a gear ratio of 8.83

Department of Electrical and Computer Engineering McMaster University, Canada

Department of Electrical and Computer Engineering McMaster University, Canada

Brushed dc motor

4 Quadrant drive

Motoring S1,S3 and D1,D3 Braking S2,S4 and D2,D4 Forward duty >50% _____ Reverse duty <50% _____

Induction motor

Rotor losses dissipated across airgap by convection

Narrow airgap for low reactive power

Cast aluminium or copper rotor bars

+

Department of Electrical and Computer Engineering McMaster University, Canada

Brushless permanent magnet motor

Concentrated or distributed multi-phase winding topologies

Permanent magnet rotor excitation

Department of Electrical and Computer Engineering McMaster University, Canada

Switched reluctance motor

Department of Electrical and Computer Engineering McMaster University, Canada

Traction motor, gear and differential configurations

Department of Electrical and Computer Engineering McMaster University, Canada

Prototype traction machine, gear-stage and differential

Department of Electrical and Computer Engineering McMaster University, Canada

University

Toyota Prius drive-train

Department of Electrical and Computer Engineering McMaster University, Canada

Toyota Prius drive-train

Department of Electrical and Computer Engineering McMaster University, Canada

'More electric' vehicle power electronics and control

Driver display screen

Toyota Prius :

Integrated power electronics

Department of Electrical and Computer Engineering McMaster University, Canada

Department of Electrical and Computer Engineering McMaster University, Canada

Shear stress $\sigma = K_u B Q$ $\sigma \Rightarrow Output coefficient$ Torque = $\pi/2 D^2 L K_u B Q$ Torque per unit rotor volume = 2σ

- K_u factor which relates to the practical realisation of the magnetic field and current sheet
- B average airgap flux density limited by maximum working flux densities of stator/rotor iron and permanent magnets
- Q electrical loading (total ampere stream per meter of airgap circumference) limited thermally by ability to dissipate winding I²R loss

Comparison of motor output coefficients

(COD)				
	Κ _U	B (T)	Q (A/m)	σ (kPa)
Brushed DC	1.0	0.7	20,000	14.0
Induction	0.81	0.57	32,000	14.7
Inverter fed IM	1.0	0.57	32,000	18.4
Synchronous	1.0	0.64	47,000	30.4
Brushless PM	0.94	0.9	50,000	42.3
Switched reluctance	1.29	0.3	50,000	19.4

Note: Q values assume forced air cooling of windings

Reference: J.G. West, IEE Power Division Colloquium on Motors and Drives for Battery Powered Propulsion, London, April 1993, Digest 1993/080

Research traction machine examples

Machine type	Induction	Brushless PM	Brushless PM
Cooling	Water jacket	Water jacket	Direct oil
Rated torque (Nm)	120	120	60
Max. Speed (rpm)	7,500	10,000	20,000
Rated power (kW)	25.8	46.2	75.4
Total mass (kg)	86	42	13
Specific output (kW/kg)	0.3	1.1	5.6
Specific torque (kNm/m ³)	12	30	81
Materials audit	kg kg/kW	kg kg/kW	
Silicon iron	59.24 2.296	32.31 0.70	
Copper	26.76 1.037	7.7 0.17	
NdFeB Magnets		2.7 0.06	

Other machine materials, copper :

TFC Commodity Charts; http://tfc-charts.w2d.com/; 30-11-10

Copper raw material cost 1988 to 2002: Average 1.0 \$ / lb, (+1.4 / -0.72)

As well as machine mass and volume, material resource and cost impacted by move to lower grade PM's

Department of Electrical and Computer Engineering McMaster University, Canada

Typical induction motor traction drive efficiency map

Typical brushless PM traction drive efficiency map

Peak torque180 NmBase speed4000 rpmMax. speed10000 rpm

Terminal constraints on machine design imposed by the power electronic converter

Limited DC supply : → limitation of machine phase voltage

Converter components and thermal capability of the machine: → limitation of phase current during continuous operation (nominal current) → limitation of phase current during intermittent operation (peak current)

2 operating points to satisfy:

- Torque at peak acceleration, and
- Maximum power.

But, within the converter supply constraints, there are only 2 variables that influence Torque and Power:

- Phase rms emf coefficient (λ_{o}) or
- Phase inductance (L_d).

- Supply constraints yield P_{e(max)},
- Limit on rms phase voltage, V_s
- Limit on peak phase current, I_q

$$T_e = 3 p \lambda_o I_q$$

Torque consideration

 $P_e = \frac{V_s \lambda_o}{L_d} \sin(\delta)$

Power consideration

Generator winding optimisation for extended speed

Power versus speed capability as a function of turns per stator pole

RPM	Turns per stator pole					
		53	60	64	68	70
	I _{pk} (A)	231.95	230.56	218.66	214.78	206.31
2000	Irms (A)	130.16	122.1	117.44	115.12	111.65
	$\eta_{\rm sys}$ (%)	88.58	88.32	89.00	89.37	89.61
	η_{sys} (%)			89.4		
	Ipk (A)	240.19	211.2	210.40	197.09*	194.25*
3000	$I_{rms}(A)$	119.62	109.22	109.45	104.85*	104.13*
	$\eta_{\rm sys}$ (%)	90.16	89.94	90.08	90.53*	90.60*
	$\eta_{\rm sys}$ (%)			89.9 [#]		
	Ipk (A)	214.79	199.67*	191.88*	187.27*	186.77*
4000	Irms (A)	109.37	104.8*	103.02*	102.28*	102.67*
	$\eta_{\rm sys}$ (%)	90.08	90.51*	90.68*	90.76*	90.82*
	$\eta_{ m sys}$ (%)			88.8*		
	$I_{pk}(A)$	221.83	201.26*	192.8*	194.2*	154.24*
4500	$I_{rms}(A)$	113.54	106.79*	105.68*	109.47*	81.82*
	$\eta_{\rm sys}$ (%)	91.02	90.51*	90.08*	88.59*	92.00*
	$\eta_{\rm sys}(\%)$			89.0*		

Table V. Summary of machine phase currents and system efficiency with speed for discontinuous and continuous current

*Achieved with continuous current operation

* Measured data

Ref.: [1] Schofield et al.

Department of Electrical and Computer Engineering McMaster University, Canada

Power train connection schemes

Series; dc-dc converter interfaces energy source to dc-link

Power train connection schemes

Series; dc-dc converter interfaces peak power buffer to dc-link

Power train connection schemes

Primary energy store

Parallel; electrical system facilitates power buffer

Example electric vehicle: 550-750Vdc traction system

Department of Electrical and Computer Engineering McMaster University, Canada

Ref.: [2] Schofield et al.

Fuel cell performance issues

Battery terminal voltage with time :

Zebra

Sealed lead-acid

Department of Electrical and Computer Engineering McMaster University, Canada

Lead-acid battery performance issues

Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery

Department of Electrical and Computer Engineering McMaster University, Canada

Lead-acid battery performance issues

Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery

Department of Electrical and Computer Engineering McMaster University, Canada

Lead-acid battery performance issues

Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery

Department of Electrical and Computer Engineering McMaster University, Canada

Battery terminal voltage with time :

Sealed lead-acid

Department of Electrical and Computer Engineering McMaster University, Canada

ZEBRA Z5C Traction battery

TABLE III ZEBRA Z5C BATTERY DATA

Туре	Zebra Z5C	
Capacity	66Ah	
Rated energy	17.8kWh	
Open circuit voltage	278.6V	
Max. regen voltage	335V	
Max. charging voltage	308V	
Min. voltage	186V	
Max. discharge current	224A	
Weight	195kg	
Specific energy	91.2Wh/kg	
Specific power	164W/kg	
Peak power	32kW	
Thermal Loss	<120W	
Cooling	Air	
Battery internal temperature	270 to 350°C	
Ambient temperature	-40 to +70°C	
Dimensions (WxLxH)	533 x 833 x 300 mm	
Number of cells per battery	216	
Cell configuration	2 parallel strings of	
	108 series cells	

ZEBRA Z5C Traction battery

Contactor and fuse unit

CAN 2b interface to vehicle management unit (VMU)

Forced air ventilation

Battery management unit (BMU)

TABLE III ZEBRA Z5C BATTERY DATA

Туре	Zebra Z5C		
Capacity	66Ah		
Rated energy	17.8kWh		
Open circuit voltage	278.6V		
Max. regen voltage	335V		
Max. charging voltage	308V		
Min. voltage	186V		
Max. discharge current	224A		
Weight	195kg		
Specific energy	91.2Wh/kg		
Specific power	164W/kg		
Peak power	32kW		
Thermal Loss	<120W		
Cooling	Air		
Battery internal temperature	270 to 350°C		
Ambient temperature	-40 to +70°C		
Dimensions (WxLxH)	533 x 833 x 300 mm		
Number of cells per battery	216		
Cell configuration	2 parallel strings of		
	108 series cells		

Department of Electrical and Computer Engineering McMaster University, Canada

ZEBRA battery, Beta-alumina cells

Circular or 'slim line' cross-section.

Cloverleaf or 'monolith' cross-section.

Battery performance issues

Peukert data for a Hawker and Zebra batteries

Battery terminal voltage with time :

Zebra

Sealed lead-acid

Department of Electrical and Computer Engineering McMaster University, Canada

Department of Electrical and Computer Engineering McMaster University, Canada

Lead-acid traction battery model

Current and voltage waveforms for single-step pulse discharging.

Department of Electrical and Computer Engineering McMaster University, Canada

McMaster University Battery test characterisation

Current and voltage waveforms for single-step pulse charging.

Department of Electrical and Computer Engineering McMaster University, Canada

Lead-acid traction battery model

Department of Electrical and Computer Engineering McMaster University, Canada

Variation in DC link supply to traction system

Simulated and measured battery terminal voltage for repetitive ECE15 driving

(a) Full data

(b) First 1000s of data

Zebra traction battery model in Matlab/Simulink

Department of Electrical and Computer Engineering McMaster University, Canada

7.5 Tonne All-Electric Delivery Vehicle

Courtesy of Smith EV, Washington, UK

Department of Electrical and Computer Engineering McMaster University, Canada

7.5 Tonne All-Electric Delivery Vehicle

Courtesy of Smith EV, Washington, UK

Department of Electrical and Computer Engineering McMaster University, Canada

Multi-battery model in Matlab/Simulink

Department of Electrical and Computer Engineering McMaster University, Canada

Multi-battery control

IEEE Hamilton Section 11th December 2013

3000

Department of Electrical and Computer Engineering McMaster University, Canada

Multi-battery control

Department of Electrical and Computer Engineering McMaster University, Canada

Department of Electrical and Computer Engineering McMaster University, Canada

Specificat	ions	U27-12XP
Voltage		12.8 V
Capacity (C	/5)	130 Ah
Dimensions (L x W x H)	including terminals	306x173x225 mm 12x6.8x8.6 in
BCI Group I	Number	Group 27
Weight (app	roximate)	19.5 kg / 42.9 lbs
Terminals, f	emale-threaded	M8 x 1.25
Specific ene	ergy	85 Wh/kg
Energy dens	sity	140 Wh/l
Standard Discharge @ 23°C	Max. cont. current	150 A
	Max. 30 sec. pulse	300 A
	Cut-off voltage	10 V
Standard Charge	Charge voltage	14.6 V
	Float	13.8 V
	Recommended	65 A
	Charge time	2.5 hrs
DC internal	resistance	5 mOhm

Do not expose to temperatures above 60°C

Specificat	ions	U27-12XP
Voltage		12.8 V
Capacity (C	/5)	130 Ah
Dimensions (L x W x H)	including terminals	306x173x225 mm 12x6.8x8.6 in
BCI Group I	Number	Group 27
Weight (app	proximate)	19.5 kg / 42.9 lbs
Terminals, f	emale-threaded	M8 x 1.25
Specific ene	ergy	85 Wh/kg
Energy dens	sity	140 Wh/l
Standard Discharge @ 23°C	Max. cont. current	150 A
	Max. 30 sec. pulse	300 A
	Cut-off voltage	10 V
Standard Charge	Charge voltage	14.6 V
	Float	13.8 V
	Recommended	65 A
	Charge time	2.5 hrs
DC internal	resistance	5 mOhm

Do not expose to temperatures above 60°C

Department of Electrical and Computer Engineering McMaster University, Canada

TSB "DESERVE" Power-train

Courtesy of Smith EV, Washington, UK

3.5 tonne delivery vehicle

Department of Electrical and Computer Engineering McMaster University, Canada

Supercapacitor peak power buffer

Department of Electrical and Computer Engineering McMaster University, Canada

Supercapacitor model in Matlab/Simulink

Department of Electrical and Computer Engineering McMaster University, Canada

Supercapacitor load testing

- (a) PC for Labview control and data acquisition
- (b) Ward-Leonard for controlled DC supply

(c) 3x 48 Volt, 165 F Maxwell supercapacitor units

(d) Measurement PCBs

Testing at MIRA

Dissemination of TSB DESERVE research project activities to UK Govt. Cabinet Minister

Department of Electrical and Computer Engineering McMaster University, Canada

Electric vehicle energy management

Test data over 1xECE15 driving cycle :

Department of Electrical and Computer Engineering McMaster University, Canada

Schematic of HPM generator cross-section

University

Ref.: [3] Schofield et al.

Generator interfacing issues - control philosophy

Department of Electrical and Computer Engineering McMaster University, Canada

Generator interfacing issues - control philosophy

Department of Electrical and Computer Engineering McMaster University, Canada

Generator interfacing issues - control philosophy

Wound field power loss during driving cycle and over battery SoC variation

Wound field regulator

University

Department of Electrical and Computer Engineering McMaster University, Canada

Generator design validation

Department of Electrical and Computer Engineering McMaster University, Canada

Emissions of Sulphur dioxide: 1970-2006

Nitrogen oxides emissions by source: 1970-2006

McMaster

University

Emissions of Carbon monoxide by source: 1970-2006 United Kingdom Carbon monoxide emissions by source: 1970-2006 million tonnes United Kingdom 14 12 Other Residential Road transnort 10 8 6 2000 1970 1975 1980 1985 1990 1995 2005 Data source: AFA Energy & Environment Non-methane volatile organic compound (VOC) emissions and targets: 1970-2010

Department of Electrical and Computer Engineering McMaster University, Canada

All of the main vehicle related pollutants have reduced over the past 10 years due to emissions reduction legislation and improved engine technologies

- this against a background increase in vehicle numbers
- the exception is carbon (CO and CO₂) which is still increasing, hence the various LOW CARBON initiatives

All of the main vehicle related pollutants have reduced over the past 10 years due to emissions reduction legislation and improved engine technologies

- this against a background increase in vehicle numbers
- the exception is carbon (CO and CO₂) which is still increasing, hence the various LOW CARBON initiatives

Source: IET Clerk-Maxwell Lecture, 19th February 2009, London, UK and BERR

Department of Electrical and Computer Engineering McMaster University, Canada

University

2050 CO₂ target means change across all sectors

Transport - wide range of technology and applications

Heat - hard to treat in a centralised manner, and hindered by building stock issues

Power - sector is more centralised, but significant challenges remain

Source: IET Clerk-Maxwell Lecture, 19th February 2009, London, UK

Department of Electrical and Computer Engineering McMaster University, Canada

2050 CO₂ target means change across all sectors

Transport - wide range of technology and applications

Heat - hard to treat in a centralised manner, and hindered by building stock issues

Power - sector is more centralised, but significant challenges remain

Achieving 2050 target may mean large scale Infrastructure shifts, eq:

⇒Countrywide electrification of heating and transport

⇒Wide-scale heat network coverage, CHP

⇒Hydrogen economy?

Source: IET Clerk-Maxwell Lecture, 19th February 2009, London, UK

- 1 Background to "more electric" vehicle concepts
- 2 Vehicle power-train power- and torque-speed requirements
- 3 Machine and power electronics
- 4 Vehicle integration considerations
- 5 Energy sources

I would like to thank the many collaborators who have contributed and invite questions

References

- [1] Schofield, N., Long, S.A., Howe, D. and McClelland, M.: 'Design of a Switched Reluctance Machine for Extended Speed Operation', IEEE Transactions on Industry Applications, Vol. 45, Issue 1, Jan.- Feb. 2009, pp. 116 – 122, DOI 10.1109/TIA.2008.2009506.
- [2] UK Foresight Vehicle LINK Programme: 'Zero Emission Small vehicle with integrated high Temperature battery and FUel CelL (ZESTFUL)', N. Schofield (PI); REE1123/R012931. EPSRC Grant No. GR/S81971/01.
- [3] Schofield, N., Al-Adsani, A.: Operation of a Hybrid PM Generator in a Series Hybrid EV Power-Train', IEEE Vehicle Power and Propulsion Conference (VPPC '11), Chicago, USA, 6-9 Sept. 2011, pp. 1-6.

Department of Electrical and Computer Engineering McMaster University, Canada