La sécurisation des infrastructures critiques

recherche d'une méthodologie d'identification des vulnérabilités et modélisation des interdépendances

Benoit Rozel

G2Elab – Grenoble INP

15 janvier 2010

Encadrants: N. HADJSAÏD, R. CAIRE, J.-P. ROGNON

ı

But

Modéliser les interdépendances des infrastructures critiques en vue de leur sécurisation

But

Modéliser les interdépendances des infrastructures critiques en vue de leur sécurisation

Infrastructures critiques

Ensemble des systèmes essentiels

But

Modéliser les interdépendances des infrastructures critiques en vue de leur sécurisation

Interdépendances

Interactions entre les systèmes pouvant mener à des défaillances

Infrastructures critiques

Ensemble des systèmes essentiels

But

Modéliser les interdépendances des infrastructures critiques en vue de leur sécurisation

Interdépendances

Interactions entre les systèmes pouvant mener à des défaillances

Infrastructures critiques

Ensemble des systèmes essentiels

Sécuriser

Éviter les défaillances du système électrique les plus fréquentes ou inacceptables

Plan

- Contexte
 - Enjeux
 - Objectifs
 - État de l'art
- Cosimulateur multi-infrastructures
 - Approche
 - Structure du simulateur
 - Bilan
- Modélisation multi-infrastructures
 - Proposition
 - Réalisation logicielle
 - Résultats
- Conclusions et perspectives

Plan

- Contexte
 - Enjeux
 - Objectifs
 - État de l'art
- Cosimulateur multi-infrastructures
 - Approche
 - Structure du simulateur
 - Bilan
- Modélisation multi-infrastructures
 - Proposition
 - Réalisation logicielle
 - Résultats
- Conclusions et perspectives

État des lieux

Des contraintes plus fortes sur l'infrastructure électrique

- Utilisation et dépendance croissante des TIC par l'infrastructure électrique
- Augmentation de la complexité de ces infrastructures

État des lieux

Des contraintes plus fortes sur l'infrastructure électrique

- Utilisation et dépendance croissante des TIC par l'infrastructure électrique
- Augmentation de la complexité de ces infrastructures

Origine des défaillances

- Événements naturels
- Erreurs humaines
- Malveillances

Cascade

Défaillance en provoque une autre

Cascade

Défaillance en provoque une autre

14/08/2003 - Côte Est

Crédit: NOAA/DMSP

- Bogue informatique
- Défaillance du système d'alarme et de supervision
- Retard de la réaction des opérateurs

Cascade

Défaillance en provoque une autre

14/08/2003 - Côte Est

Crédit: NOAA/DMSP

- Bogue informatique
- Défaillance du système d'alarme et de supervision
- Retard de la réaction des opérateurs

Cascade

Défaillance en provoque une autre

14/08/2003 - Côte Est

Crédit: NOAA/DMSP

- Bogue informatique
- Défaillance du système d'alarme et de supervision
- Retard de la réaction des opérateurs

19/08/2006 – Alabama

- PLC défectueux
- Surcharge du réseau de communication
- Arrêt d'une tranche de centrale nucléaire

Aggravation

Interaction entre 2 infrastructures provoque une augmentation de la sévérité et de l'indisponibilité

Aggravation

Interaction entre 2 infrastructures provoque une augmentation de la sévérité et de l'indisponibilité

28/09/2003 - Italie

Crédit : Photomontage d'après Living Earth

- Panne du réseau électrique
- épuisement des ASI locales
- Indisponibilité des moyens de supervision
- Complication de la remise en service

Aggravation

Interaction entre 2 infrastructures provoque une augmentation de la sévérité et de l'indisponibilité

28/09/2003 - Italie

Crédit : Photomontage d'après Living Earth

- Panne du réseau électrique
- épuisement des ASI locales
- Indisponibilité des moyens de supervision
- Complication de la remise en service

Mode commun

Défaillances simultanées de plusieurs éléments ayant une cause externe identique

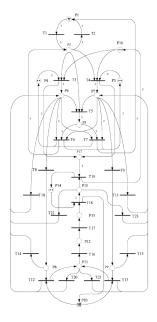
Complexité du problème

Grands systèmes inter-connectés

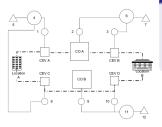
Réseaux hétérogènes composés de milliers ou millions de nœuds dont la structure est irrégulière, complexe et évolue dynamiquement dans le temps

Complexité du problème

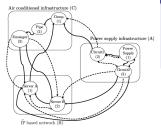
Grands systèmes inter-connectés


Réseaux hétérogènes composés de milliers ou millions de nœuds dont la structure est irrégulière, complexe et évolue dynamiquement dans le temps

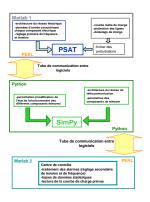
Objectifs de la modélisation


Objectifs

- Intégration des infrastructures dans un modèle unifié
- Mise en évidence des modes communs de défaillances et des effets de cascade
- Caractérisation de la criticité
- Recherche des points les plus faibles, qui ne sont pas nécessairement des éléments physiques


Approches utilisées dans la littérature

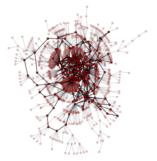
Réseaux de Petri


Approches utilisées dans la littérature

- Réseaux de Petri
 - Graphes approvisionnement/demande

Approches utilisées dans la littérature

- Réseaux de Petri
- Graphes approvisionnement/demande
- Modélisation basée sur agents



Approches utilisées dans la littérature

- Réseaux de Petri
- Graphes approvisionnement/demande
- Modélisation basée sur agents

Approches explorées

Cosimulation multi-infrastructure

Approches utilisées dans la littérature

- Réseaux de Petri
- Graphes approvisionnement/demande
- Modélisation basée sur agents

Approches explorées

- Cosimulation multi-infrastructure
- Théorie des réseaux complexes

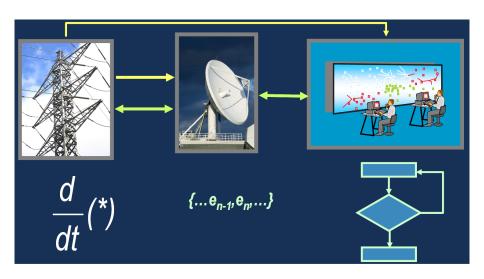
Plan

- Contexte
 - Enjeux
 - Objectifs
 - État de l'art
- Cosimulateur multi-infrastructures
 - Approche
 - Structure du simulateur
 - Bilan
- Modélisation multi-infrastructures
 - Proposition
 - Réalisation logicielle
 - Résultats
- Conclusions et perspectives

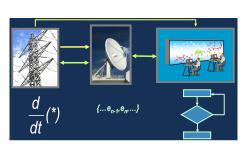
Approche

Visée

Étude d'événements comme les récentes pannes généralisées : stabilité moyen long terme

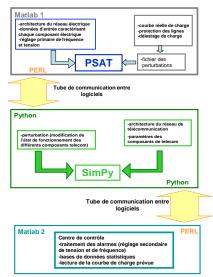

Approche

Visée


Étude d'événements comme les récentes pannes généralisées : stabilité moyen long terme

- Développement d'un cosimulateur multi-infrastructures et d'un cas d'étude complet (non présenté ici)
- Réalisation pendant un stage de M2R (Maria Viziteu – juin 2007)

Structure du simulateur



Structure du simulateur

Logiciels

Basé sur 3 outils dédiés et une communication inter-processus

Bilan du cosimulateur multi-infrastructures

- Cosimulateur multi-plateforme, extensible, modulaire et très flexible
- L'outil développé démontre les effets de défaillances d'une infrastructure sur les autres
- Une meilleure compréhension des interdépendances peut être obtenue en utilisant des outils qui permettent de simuler la réalité

Bilan du cosimulateur multi-infrastructures

- Cosimulateur multi-plateforme, extensible, modulaire et très flexible
- L'outil développé démontre les effets de défaillances d'une infrastructure sur les autres
- Une meilleure compréhension des interdépendances peut être obtenue en utilisant des outils qui permettent de simuler la réalité
- Temps de calcul important par scénario
- Une autre approche est souhaitable pour des études systématiques sur grands réseaux

Plan

- Contexte
 - Enjeux
 - Objectifs
 - État de l'art
- Cosimulateur multi-infrastructures
 - Approche
 - Structure du simulateur
 - Bilan
- Modélisation multi-infrastructures
 - Proposition
 - Réalisation logicielle
 - Résultats
- Conclusions et perspectives

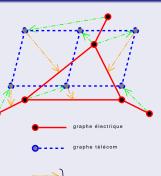
Cahier des charges

Objectifs

- Caractérisation de la criticité
- Un modèle commun / unique de modélisation
- Mise en évidence des modes communs de défaillances et des effets de cascade
- Recherche des points les plus faibles, qui ne sont pas nécessairement des éléments physiques

Cahier des charges

Objectifs


- Caractérisation de la criticité
- Un modèle commun / unique de modélisation
- Mise en évidence des modes communs de défaillances et des effets de cascade
- Recherche des points les plus faibles, qui ne sont pas nécessairement des éléments physiques

Cadre

- Approche complémentaire à la simulation comportementale
- Limitation de l'étude à l'infrastructure électrique et au système associé de contrôle basé sur les TIC

Description de la modélisation (1)

Approche inspirée de la théorie des réseaux complexes

2 graphes

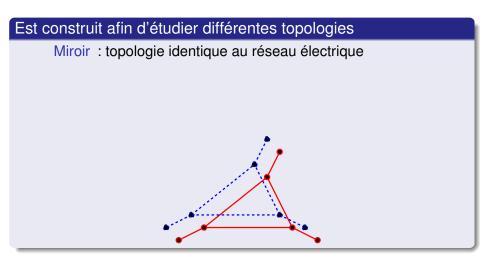
- composés de nœuds et de liens (ou lignes)
- reliés par des règles d'interdépendances

nœuds	liens
générateurs	lignes
consommateurs	câbles
_	transformateurs
com routeurs	filaire
	optique
	hertzien
	nœuds générateurs consommateurs -

Réseau électrique

Charge des lignes calculées par DC load flow

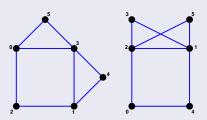
- On néglige Q, R et C
- On considère V à sa valeur nominale
- Si N est le nombre de nœuds, N équations linéaires et N inconnues
- Permet de réduire le problème à une inversion de matrice : pas besoin d'un logiciel de calcul de répartition de charge
- Matlab et Python peuvent donc le résoudre sans module supplémentaire


Réseau électrique

Charge des lignes calculées par DC load flow

- On néglige Q, R et C
- On considère V à sa valeur nominale
- Si N est le nombre de nœuds, N équations linéaires et N inconnues
- Permet de réduire le problème à une inversion de matrice : pas besoin d'un logiciel de calcul de répartition de charge
- Matlab et Python peuvent donc le résoudre sans module supplémentaire

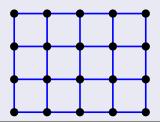
Zone viable


- Plus de la moitié des nœuds
- Capacité de génération suffisante
- Puissance du nœud bilan < 20%

Est construit afin d'étudier différentes topologies

Miroir : topologie identique au réseau électrique

BA : graphe aléatoire utilisant le modèle de l'attachement préférentiel de Barabási-Albert


Est construit afin d'étudier différentes topologies

Miroir : topologie identique au réseau électrique

BA : graphe aléatoire utilisant le modèle de l'attachement

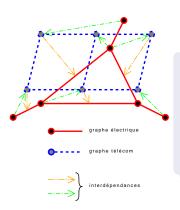
préférentiel de Barabási-Albert

Grille: de dimension 2

Est construit afin d'étudier différentes topologies

Miroir : topologie identique au réseau électrique

BA : graphe aléatoire utilisant le modèle de l'attachement


préférentiel de Barabási-Albert

Grille: de dimension 2

Charge des nœuds

Calculée par le nombre de chemins géodésiques les traversant (OSPF utilise Dijkstra)

Règles d'interdépendances

- Si nœud électrique plus alimenté, alors les nœuds télécom alimentés par ce dernier supprimés
- Si suppression d'un nœud télécom, alors suppression du lien électrique le plus chargé de la même zone

Les éléments ont une capacité fixe

- Définie par le système ou
- Charge maximale = $(1 + \alpha) \times$ charge initiale

Les éléments ont une capacité fixe

- Définie par le système ou
- Charge maximale = $(1 + \alpha) \times$ charge initiale

Algorithme

Calcul de la capacité pour chaque élément

Les éléments ont une capacité fixe

- Définie par le système ou
- Charge maximale = $(1 + \alpha) \times$ charge initiale

- Calcul de la capacité pour chaque élément
- 2 Suppression de l'élément déclencheur

Les éléments ont une capacité fixe

- Définie par le système ou
- Charge maximale = $(1 + \alpha) \times$ charge initiale

- Calcul de la capacité pour chaque élément
- Suppression de l'élément déclencheur
- Ocalcul des nouvelles charges des éléments

Les éléments ont une capacité fixe

- Définie par le système ou
- Charge maximale = $(1 + \alpha) \times$ charge initiale

- Calcul de la capacité pour chaque élément
- Suppression de l'élément déclencheur
- Oalcul des nouvelles charges des éléments
- Si la charge dépasse la capacité pour des éléments
 - suppression des éléments surchargés
 - retour à 3

Les éléments ont une capacité fixe

- Définie par le système ou
- Charge maximale = $(1 + \alpha) \times$ charge initiale

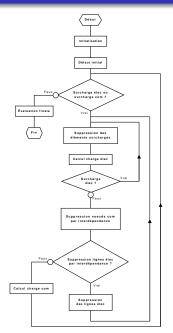
- Calcul de la capacité pour chaque élément
- 2 Suppression de l'élément déclencheur
- Oalcul des nouvelles charges des éléments
- Si la charge dépasse la capacité pour des éléments
 - suppression des éléments surchargés
 - retour à 3
- Fin

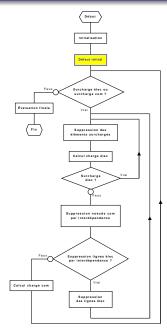
- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin

- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin
- ② Défaut initial

- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin
- ② Défaut initial
- Oalcul des charges du réseau élec

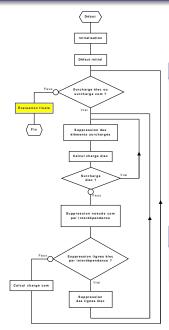
- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin
- ② Défaut initial
- Oalcul des charges du réseau élec
- Si surcharge élec, suppression des lignes et retour à 3


- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin
- Défaut initial
- Oalcul des charges du réseau élec
- Si surcharge élec, suppression des lignes et retour à 3
- Suppression d'éventuels nœuds de com sans alim élec


- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin
- Défaut initial
- Oalcul des charges du réseau élec
- Si surcharge élec, suppression des lignes et retour à 3
- Suppression d'éventuels nœuds de com sans alim élec
- Si cette suppression conduit à supprimer des lignes élec, les supprimer et retour à 3

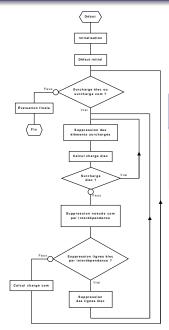
- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin
- Défaut initial
- Oalcul des charges du réseau élec
- Si surcharge élec, suppression des lignes et retour à 3
- Suppression d'éventuels nœuds de com sans alim élec
- Si cette suppression conduit à supprimer des lignes élec, les supprimer et retour à 3
- Sinon, calcul des charges du réseau de com

- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin
- Défaut initial
- Oalcul des charges du réseau élec
- Si surcharge élec, suppression des lignes et retour à 3
- Suppression d'éventuels nœuds de com sans alim élec
- Si cette suppression conduit à supprimer des lignes élec, les supprimer et retour à 3
- Sinon, calcul des charges du réseau de com
- 3 Si surcharge de com, suppression des éléments et retour à 3


- Initialisation
 - a. Création des éléments à partir des réseaux
 - b. Calcul des charges max associés aux éléments si besoin
- ② Défaut initial
- Oalcul des charges du réseau élec
- Si surcharge élec, suppression des lignes et retour à 3
- Suppression d'éventuels nœuds de com sans alim élec
- Si cette suppression conduit à supprimer des lignes élec, les supprimer et retour à 3
- Sinon, calcul des charges du réseau de com
- 3 Si surcharge de com, suppression des éléments et retour à 3
- Sinon, fin de la simulation : évaluation des conséquences

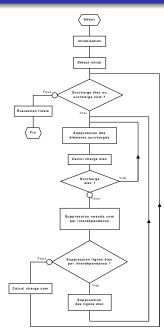
Point 2 : Défaut initial

- Défaut sur un élément d'une infrastructure aléatoire ou systématique (N-1)
- Défaut sur une zone géographique
- Défaut sur un type de composant
- Augmentation de la puissance électrique (création d'une surcharge)



Point 2 : Défaut initial

- Défaut sur un élément d'une infrastructure aléatoire ou systématique (N-1)
- Défaut sur une zone géographique
- Défaut sur un type de composant
- Augmentation de la puissance électrique (création d'une surcharge)


Point 9 : Évaluation des conséquences

Puissance non fournie aux consommateurs lors de l'état final

Cascade élec imbriquée dans cascade télécom

- Report de charge élec plus rapide que com
- Calcul charge réseau de com le plus long

Cascade élec imbriquée dans cascade télécom

- Report de charge élec plus rapide que com
- Calcul charge réseau de com le plus long

Algorithme

mais s'affranchit d'une simulation temporelle

Mise en œuvre

Sur deux plates-formes différentes : Matlab et Python

Mise en œuvre

Sur deux plates-formes différentes : Matlab et Python

Avantages

- Fournit un moyen de vérification
- Permet de profiter des avantages des deux logiciels :
 - simplicité de programmation et utilisation du module pour réseaux complexes avec Python
 - connaissance de Matlab au laboratoire
- On peut choisir la plus rapide

Mise en œuvre

Sur deux plates-formes différentes : Matlab et Python

Avantages

- Fournit un moyen de vérification
- Permet de profiter des avantages des deux logiciels :
 - simplicité de programmation et utilisation du module pour réseaux complexes avec Python
 - connaissance de Matlab au laboratoire
- On peut choisir la plus rapide

Inconvénients

- Des fonctions supplémentaires à coder sous Matlab
- Effort supplémentaire pour la maintenance

Mise en œuvre

Sur deux plates-formes différentes : Matlab et Python

Avantages

- Fournit un moyen de vérification
- Permet de profiter des avantages des deux logiciels :
 - simplicité de programmation et utilisation du module pour réseaux complexes avec Python
 - connaissance de Matlab au laboratoire
- On peut choisir la plus rapide

Inconvénients

- Des fonctions supplémentaires à coder sous Matlab
- Effort supplémentaire pour la maintenance

Calcul de charge du réseau de com UCTE sur P4

- 294s avec Matlab
- 94s avec Python
- 18s avec Mex-file

Scénario d'étude

Réseau électrique de la France

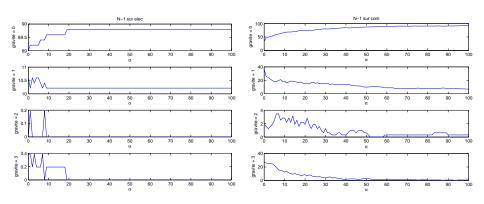
- 318 nœuds
- 519 lignes
- Niveaux 400 kV et 225 kV
- Charges en été 2002
- Baisse de la production de 8% pour équilibrer
- Topologie miroir pour réseau de com au début

Scénario d'étude

Réseau électrique de la France

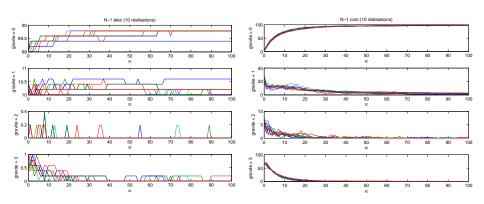
- 318 nœuds
- 519 lignes
- Niveaux 400 kV et 225 kV
- Charges en été 2002
- Baisse de la production de 8% pour équilibrer
- Topologie miroir pour réseau de com au début

Réalisation

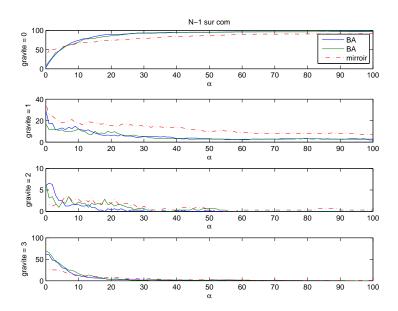

N-1 du réseau électrique et N-1 du réseau de communication

Classes de gravité

4 catégories		
gravité	puissance non fournie	problème
0	0%	aucun pour les consommateurs
1]0%; 10%]	localisé
2]10%; 90%]	grave
3	> 90%	panne généralisée

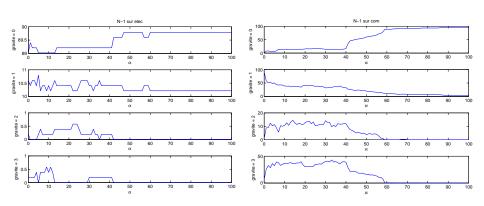

Étude du coefficient de tolérance

Charge maximale = $(1 + \alpha) \times$ charge initiale



Étude de la topologie du réseau de com (BA)

318 nœuds et 632 liens - 10 réalisations



Étude de la topologie du réseau de com (BA)

Étude de la topologie du réseau de com (grille)

Grille 53×6 : 318 nœuds et 577 liens

Étude sur d'autres réseaux électriques

Réseau de l'UCTE

- 1254 nœuds
- 1944 lignes
- 378 générateurs

Réseau IEEE 300 nœuds

- 411 lignes
- 69 générateurs

Étude sur d'autres réseaux électriques

Réseau de l'UCTE

- 1254 nœuds
- 1944 lignes
- 378 générateurs

Réseau IEEE 300 nœuds

- 411 lignes
- 69 générateurs

Résultats

- Les niveaux de chaque classe de gravité varient (car dépendent de l'état de charge initial)
- Conclusions sur le coefficient de tolérance et les topologies restent valables

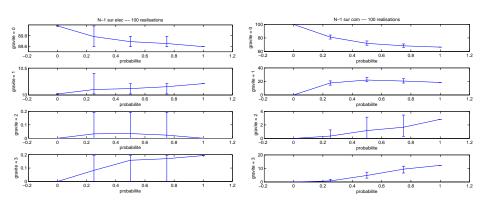
Influence d'une hypothèse d'interdépendance (1)

Nouvelle règle

Probabilité que la ligne élec la plus chargée de la zone soit supprimée en cas de perte de routeur

Influence d'une hypothèse d'interdépendance (1)

Nouvelle règle


Probabilité que la ligne élec la plus chargée de la zone soit supprimée en cas de perte de routeur

Étude

sur réseau français et IEEE 300 nœuds avec réseau de com en miroir

Influence d'une hypothèse d'interdépendance (2)

France

Bilan de la modélisation multi-infrastructures

- Proposition d'une modélisation novatrice et paramétrable
- Répond aux objectifs : modèle unifié, modélisation des effets de cascade et mode commun
- Permet la caractérisation de la criticité du réseau de communication
- Permet l'évaluation de la vulnérabilité de chaque élément et de la topologie
- Réalisation d'études paramétriques, de la topologie, de non versatilité et remise en cause d'une hypothèse

Bilan de la modélisation multi-infrastructures

- Proposition d'une modélisation novatrice et paramétrable
- Répond aux objectifs : modèle unifié, modélisation des effets de cascade et mode commun
- Permet la caractérisation de la criticité du réseau de communication
- Permet l'évaluation de la vulnérabilité de chaque élément et de la topologie
- Réalisation d'études paramétriques, de la topologie, de non versatilité et remise en cause d'une hypothèse
- Limitations dues à l'ensemble des hypothèses considérées
- Pas d'informations temporelles

Plan

- Contexte
 - Enjeux
 - Objectifs
 - État de l'art
- Cosimulateur multi-infrastructures
 - Approche
 - Structure du simulateur
 - Bilan
- Modélisation multi-infrastructures
 - Proposition
 - Réalisation logicielle
 - Résultats
- Conclusions et perspectives

Conclusions

Contributions

- Création d'un outil multi-logiciel pour la simulation comportementale multi-infrastructures
- Proposition d'une modélisation unifiée des interdépendances

Conclusions

Contributions

- Création d'un outil multi-logiciel pour la simulation comportementale multi-infrastructures
- Proposition d'une modélisation unifiée des interdépendances

Dans ce travail, ont été proposées :

- une modélisation des interdépendances des systèmes couplés ainsi que des modes communs de défaillance et les effets de cascade
- une méthodologie d'évaluation des vulnérabilités des réseaux électriques vis à vis des systèmes d'information et de communication
- une évaluation des risques et des impacts potentiels de ces défaillances sur les pannes généralisées

Perspectives

- Aspect temporel énergie non distribuée (simulation à temps discret)
- Meilleure formalisation des interdépendances
- Travaux sur les topologies de réseaux de communication
- Extension du cosimulateur
- Validation de l'ensemble sur un réseau test avec une infrastructure et des données réelles

La sécurisation des infrastructures critiques

recherche d'une méthodologie d'identification des vulnérabilités et modélisation des interdépendances

Benoit Rozel

G2Elab - Grenoble INP

15 janvier 2010

