

Optimisation de la sûreté d'un système électrique en présence d'ENR intermittentes Intégration de contraintes de déploiement de la réserve primaire dans un outil de placement journalier de production

Soirée des doctorants IEEE PES France – 31 mars 2016 Laurent CAPELY EDF R&D / Département EFESE

Augmentation de la puissance ENR installée sans renforcement de la contribution des ENR à la sureté système

Politique risque respectée

Compensation de la variabilité infra-horaire + tenue de l'ensemble des ENR au creux de tension HTB

Politique risque respectée

Politique risque non respectée

Modification des réglages des protections de découplage + optimisation du plan de délestage

Politique risque respectée

Taux d'insertion instantané

Politique risque non respectée

Politique risque respectée

• Politique risque non respectée

Taux d'insertion instantané

edf

Optimisation du plan de production avec contraintes dynamiques

Consommation

Taux d'insertion instantané

Optimisation de la sûreté d'un système électrique en présence d'ENR intermittentes Intégration de contraintes de déploiement de la réserve primaire dans un outil de placement journalier de production

Carmen Cardozo

Ph. Dessante M. Petit L. Capely V. Silva W. van Ackooij

Soirée des doctorants IEEE PES France - SEE 31 mars 2016

 Intégration
 Intégration des EnR
 Contraintes de sûreté renforcées
 Nouvelle formulation du problème FCUC
 Conclusions

 000
 0000
 000000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Contributions de la thèse

- Étudier la relation entre le creux de fréquence et les variables d'optimisation du modèle UC (Unit Commitment).
- Quantifier l'impact des sources non-synchrones sur la performance de la régulation primaire de fréquence.
- Analyser le coût et les bénéfices de différentes mesures palliatives (*e.g.*, écrêtement, inertie, soutien dynamique).
- Proposer une nouvelle formulation du problème FCUC (Frequency Constrained Unit Commitment).

 Modélisation
 Intégration des EnR
 Contraintes de sûreté renforcées
 Nouvelle formulation du problème FCUC
 Conclusions

 0000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Plan de la présentation

Modélisation

- Outil de placement de production
- Régulation primaire de fréquence
- Approche de simulation et cas d'étude

2 Intégration des EnR

- 3 Contraintes de sûreté renforcées
- 4 Nouvelle formulation du problème FCUC

5 Conclusions

$$\begin{array}{ll} \min_{g \in \mathbb{R}^{m1}, u \in \{0,1\}^{m2}} & f_0(g,u) \\ \text{sous contraintes} & f_i(g,u) \leq 0 & i = 1, \dots, i, \\ & g_\ell(g,u) = 0 & \ell = 1, \dots, I, \end{array}$$

où :

($g, u \rightarrow$ programme d'appel (état et puissance de consigne).

2 $f_0 : \mathbb{R}^m \to \mathbb{R}$ représente le coût de production.

- $f_i : \mathbb{R}^m \to \mathbb{R} \quad \forall i = 1, ..., i$, sont les contraintes d'inégalité :
 - Limites de capacité (G_i^{max} et G_i^{min}).
 - Limites sur les gradients horaires de puissance $(R_i^{up} \text{ et } R_i^{dn})$.
 - Temps minimum de marche/arrêt $(T_i^{up} \text{ et } T_i^{dn})$.
 - Critère de sûreté : prescription de réserve (*R^{min}*).
 - Limites d'allocation de réserve (R_i^{max}).

• $g_{\ell} : \mathbb{R}^m \to \mathbb{R} \quad \forall \ell = 1, \dots, I, \text{ sont les contraintes d'égalité :}$

• Équilibre offre-demande (D)...

Modélisation 0000	Intégration des EnR 0000		Nouvelle formulation du problème FCUC	
Régula	ation primai	ire de fréquence	Placement g,u Régulation fréquence	
-		Envirolant Machin		
\sim		Equivalent-Machine	e Multi-Machine	
(:)	Avantages	Expression analytique	Paramètres des groupes	;
(\dot{z})	Limitations	Calcul paramètres	Complexité / Hypothèse	S

On propose une version modifiée du modèle *Multi-Machine* avec saturation de la puissance produite.

Pas d'expression analytique pour $f_{min}(g, u, D(t), \Delta P, ...)$.

Le modèle est résolu par une méthode d'intégration numérique à pas fixe.

 Modélisation
 Intégration des EnR
 Contraintes de sûreté renforcées
 Nouvelle formulation du problème FCUC
 Conclusions

 000
 0000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Simulation séquentielle

Cas d'étude : système de type insulaire avec 18 groupes thermiques.

 Modélisation
 Intégration des EnR
 Contraintes de sûreté renforcées
 Nouvelle formulation du problème l

 000
 0000
 0000
 000000000

Conclusions

Régulation primaire de fréquence

Creux de fréquence pour toute perte de groupe sur une année.

Objectif 1 : étudier la relation entre le creux de fréquence et les variables d'optimisation du modèle UC.

 $f_{min}(g, u, H_j, \tau_j, R_j, S_{n,j}, G_j^{max}, R_j^{max}, D(h), g_k).$

Problème FCUC difficile à formuler car la contrainte sur le creux de fréquence est non-linéaire et implicite.

Modélisation 0000

Intégration des EnR

Contraintes de sûreté renforcée

Nouvelle formulation du problème FCUC 00000000

Conclusions

Plan de la présentation

Modélisation

Intégration des EnR

- Scénarios de développement du PV
- Modification des programmes d'appel
- Impact sur l'évolution de la fréquence
- Besoin d'un renforcement des contraintes de sûreté

Contraintes de sûreté renforcées

4 Nouvelle formulation du problème FCUC

5 Conclusions

Modélisation 0000 Intégration des EnR

Contraintes de sûreté renforcées

Nouvelle formulation du problème FCUC

Conclusions

Scénarios de développement du PV

Intégration des EnR 0000

Modification des programmes d'appel

Modélisation 0000 Intégration des EnR

Contraintes de sûreté renfore

Nouvelle formulation du problème FCUC

Conclusions

Modification des programmes d'appel

- ② ↑ Arrêt/Démarrage
- ↓ Nombre d'unités

Modélisation 0000 Intégration des EnR

Contraintes de sûreté renforcé

Nouvelle formulation du problème FCUC

Conclusions

Modification des programmes d'appel

② ↑ Arrêt/Démarrage

③ ↓ Nombre d'unités

④ ↓ Énergie cinétique

 Intégration
 Intégration des EnR

 0000
 0000

es EnR Contraintes o 0000 Nouvelle formulation du problème FCUC

Conclusions

Modification des programmes d'appel

① (1) Marges

② ↑ Arrêt/Démarrage

⑧ ↓ Nombre d'unités

④ ↓ Énergie cinétique

I ↓ Puissance

démarrée

 Modélisation
 Intégration des EnR

 0000
 0000

des EnR Contraint

traintes de sûreté renforcées

Nouvelle formulation du problème FCUC 00000000

Conclusions

Modification des programmes d'appel

Impact sur l'évolution de la fréquence

Intégration des EnR

délisationIntégration des EnRContra0000000000

ontraintes de sûreté renforcées

Nouvelle formulation du problème FCUC

Conclusions

Impact sur l'évolution de la fréquence

Impact sur l'évolution de la fréquence

Intégration des EnR

Nouvel indice : Periods with Insufficient Dynamic Response (PIDR) Contribution 2 : UC \rightarrow MMR-ROSFR \Rightarrow effets contre-intuitifs. **Objectif 2 :** quantifier l'impact des sources non-synchrones sur la performance de la régulation primaire de fréquence.
 Modélisation
 Intégration des EnR
 Contraintes de sûreté renforcées

 0000
 0000
 0000

Nouvelle formulation du problème FCUC

Conclusions

Besoin d'un renforcement des contraintes de sûreté

Risque de délestage avec le développement des EnR intermittentes :

	0 MW	70 MW	130 MW	190 MW	250 MW
PIDR (h/y)	0	0	12	19	33

2 Coût de fourniture de la réserve primaire par scénario :

	0 MW	70 MW	130 MW	190 MW	250 MW
Cost (%)	6.3	7.3	8.0	9.0	10.4

- Solution Dispersion accrue des besoins en réserve. Rappel : $\sum_{\substack{j=1\\j\neq k}}^{N} r_j^{h,pr} \ge g_k^h$.
- Différents leviers pour améliorer la performance de la régulation primaire de fréquence :

Rappel : $f_{min}(g, u, H_j, \tau_j, R_j, S_{n,j}, G_j^{max}, R_j^{max}, D(h), g_k)$.

Contraintes de sûreté renforcées

Plan de la présentation

Contraintes de sûreté renforcées Contraintes indirectes Analyse coût/bénéfice

 $\sum r_i^{h,pr} \ge g_k^h$

j=1 $i\neq k$

$$\forall h = 1, \ldots, T, \forall k = 1, \ldots, N$$

On cherche à formuler le problème Frequency Constrained UC. $\underline{q} \rightarrow \text{seuil de sûreté (Hz)} \quad q_m \rightarrow \text{creux de fréquence (Hz)}$

On cherche à formuler le problème "Frequency" Constrained UC. $\underline{q} \rightarrow \text{seuil de sûreté (Hz)} \quad q_m \rightarrow \text{creux de fréquence (Hz)}$ Modélisation 0000 égration des EnR

Contraintes de sûreté renforcées

Nouvelle formulation du problème FCUC

Conclusions

Coût/bénéfices des mesures palliatives

UC modifié	Contrainte	Coût	Bénéfice
Prescription d'une réserve minimale	$\sum_{j=1}^{N} r_j^{h,pr} \geq R_{pr}^{min}$		
Prescription d'une			
inertie minimale			
Effacement des EnR			
Soutien dynamique			

Intégration des EnR Contraintes de sûreté renforcées 0000

Coût/bénéfices des mesures palliatives

UC modifié	Contrainte	Coût	Bénéfice
Prescription d'une réserve minimale	$\sum_{j=1}^{N} r_j^{h,pr} \geq R_{pr}^{min}$	€€€	✓*
Prescription d'une inertie minimale			
Effacement des EnR			
Soutien dynamique			

✓*: pour une prescription donnée, un scenario EnR, un seuil de sûreté...

Intégration des EnR Contraintes de sûreté renforcées 0000

Coût/bénéfices des mesures palliatives

	UC modifié	Contrainte	Coût	Bénéfice
-	Prescription d'une réserve minimale	$\sum_{j=1}^{N} r_j^{h,pr} \geq R_{pr}^{min}$	€€€	✓*
	Prescription d'une inertie minimale			
	Effacement des EnR			
	Soutien dynamique			

✓*: pour une prescription donnée, un scenario EnR, un seuil de sûreté...

 $\begin{array}{ll} \underset{g \in \mathbb{R}^{m1}, u \in \{0,1\}^{m2}}{\text{minimiser}} & f_0(g, u) \\ \text{sous contraintes} & f_i(g, u) \leq 0 & \forall i = 1, \dots, i, \\ & g_\ell(g, u) = 0 & \forall \ell = 1, \dots, I, \\ & \sum_{\substack{j=1\\j \neq k}}^{N} r_j^{h, pr} \geq g_k^h & \forall h = 1, \dots, T, \forall k = 1, \dots, N, \\ & \sum_{\substack{j=1\\j \neq k}}^{N} H_j S_{n,j} u_j^h \geq K E^{min} & \forall h = 1, \dots, T. \end{array}$

$$\begin{array}{ll} \underset{g \in \mathbb{R}^{m1}, u \in \{0, 1\}^{m2}}{\text{minimiser}} & f_0(g, u) \\ \text{ous contraintes} & f_{\iota}(g, u) \leq 0 & \forall \iota = 1, \dots, i, \\ & g_{\ell}(g, u) = 0 & \forall \ell = 1, \dots, I, \\ & \sum_{\substack{j=1\\j \neq k}}^{N} r_j^{h, pr} \geq g_k^h & \forall h = 1, \dots, T, \forall k = 1, \dots, N, \\ & \sum_{\substack{j=1\\j \neq k}}^{N} H_j S_{n, j} u_j^h \geq K E_{-k}^{min} & \forall h = 1, \dots, T, \forall k = 1, \dots, N. \end{array}$$

S

[1] P. Daly, D. Flynn, and N. Cunniffe. Inertia considerations within unit commitment and economic dispatch for systems with high non-synchronous penetrations. PowerTech, 2015 IEEE Eindhoven, pages 1-6, June 2015.

$$\begin{array}{l} \underset{g \in \mathbb{R}^{m1}, u \in \{0,1\}^{m2}}{\text{minimiser}} f_0(g, u) \\ \text{sous contraintes} \quad f_{\iota}(g, u) \leq 0 \\ g_{\ell}(g, u) = 0 \\ & \forall \ell = 1, \dots, l, \\ \\ \sum_{\substack{j=1\\j \neq k}}^{N} r_j^{h, pr} \geq g_k^h \\ & \forall h = 1, \dots, T, \forall k = 1, \dots, N, \\ \\ \\ \sum_{\substack{j=1\\j \neq k}}^{N} \mathcal{H}_j S_{n,j} u_j^h \geq \frac{f_0}{2ROCOF^{max}} g_k^h \quad \forall h = 1, \dots, T, \forall k = 1, \dots, N. \end{array}$$

 P. Daly, D. Flynn, and N. Cunniffe. Inertia considerations within unit commitment and economic dispatch for systems with high non-synchronous penetrations. PowerTech, 2015 IEEE Eindhoven, pages 1-6, June 2015.
 R. Doherty, G. Lalor, and M. O'Malley. Frequency control in competitive electricity market dispatch. *IEEE Transactions on Power Systems*, 20(3):1588-1596, 2005.

Intégration des EnR Contraintes de sûreté renforcées 000

Coût/bénéfices des mesures palliatives

UC modifié	Contrainte	Coût	Bénéfice
Prescription d'une réserve minimale	$\sum_{j=1}^{N} r_{j}^{h,pr} \geq R_{pr}^{min}$	€€€	✓*
Prescription d'une	$\sum_{\substack{j=1\\j\neq k}}^{N} H_j S_{n,j} u_j^h \ge K E_{-k}^{min}$	€€	✓*
inertie minimale	$\sum_{\substack{j=1\\j\neq k}}^{N} H_j S_{n,j} u_j^h \ge \frac{f_0}{2ROCOF \max} g_k^h$	€	✓*
Effacement des EnR			
Soutien dynamique			

✓*: pour une prescription donnée, un scenario EnR, un seuil de sûreté...

Intégration des EnR Contraintes de sûreté renforcées

Coût/bénéfices des mesures palliatives

UC modifié	Contrainte	Coût	Bénéfice
Prescription d'une réserve minimale	$\sum_{j=1}^{N} r_{j}^{h,pr} \geq R_{pr}^{min}$	€€€	✓*
Prescription d'une	$\sum_{\substack{j=1\\j\neq k}}^{N} H_j S_{n,j} u_j^h \ge K E_{-k}^{min}$	€€	✓*
inertie minimale	$\sum_{\substack{j=1\\j\neq k}}^{N} H_j S_{n,j} u_j^h \ge \frac{f_0}{2ROCOFmax} g_k^h$	€	✓*
Effacement des EnR	$\sum_{j=1}^{N} g_j^h + VG^h = D^h$	€*	\wedge
Soutien dynamique			

✓*: pour une prescription donnée, un scenario EnR, un seuil de sûreté...

€*: un niveau limité d'effacement peut réduire le coût.

 \bigwedge : effets contre-productifs liés aux contraintes inter-temporelles.

Intégration des EnR Contraintes de sûreté renforcées

Coût/bénéfices des mesures palliatives

UC modifié	Contrainte	Coût	Bénéfice
Prescription d'une réserve minimale	$\sum_{j=1}^{N} r_{j}^{h,pr} \geq R_{pr}^{min}$	€€€	✓*
Prescription d'une	$\sum_{\substack{j=1\\j\neq k}}^{N} H_j S_{n,j} u_j^h \ge K E_{-k}^{min}$	€€	✓*
inertie minimale	$\sum_{\substack{j=1\\j\neq k}}^{N} H_j S_{n,j} u_j^h \ge \frac{f_0}{2ROCOFmax} g_k^h$	€	✓*
Effacement des EnR	$\sum_{j=1}^{N} g_j^h + VG^h = D^h$	€*	\wedge
Soutien dynamique	$\sum_{\substack{j=1\\j\neq k}}^{N} r_j^{h,pr} \ge g_k^h - C^{fixed}$	€+ ? [†]	✓* ⚠

✓*: pour une prescription donnée, un scenario EnR, un seuil de sûreté...

€*: un niveau limité d'effacement peut réduire le coût.

 \bigwedge : effets contre-productifs liés aux contraintes inter-temporelles.

?[†]: coûts des moyens alternatifs non inclus.

 \bigwedge : \Downarrow inertie, \Uparrow niveau de charge et besoin en réserve.

égration des EnR

Contraintes de sûreté renforcées

Nouvelle formulation du problème FCUC 00000000

Conclusions

Coût/bénéfices des mesures palliatives

UC modifié	Contrainte	Coût	Bénéfice
Prescription d'une réserve minimale	$\sum_{j=1}^{N} r_{j}^{h,pr} \geq R_{pr}^{min}$	€€€	✓*
Prescription d'une	$\sum_{\substack{j=1\\j\neq k}}^{N} H_j S_{n,j} u_j^h \ge K E_{-k}^{min}$	€€	✓*
inertie minimale	$\sum_{\substack{j=1\\j\neq k}}^{N} H_j S_{n,j} u_j^h \ge \frac{f_0}{2ROCOFmax} g_k^h$	€	✓*
Effacement des EnR	$\sum_{j=1}^{N} g_j^h + VG^h = D^h$	€*	\wedge
Soutien dynamique	$\sum_{\substack{j=1\\j\neq k}}^{N} r_j^{h,pr} \ge g_k^h - C^{fixed}$	€+ ? [†]	✓* 🛕

Objectif 3 : Analyser le coût et les bénéfices de différentes mesures palliatives.

Besoin d'une méthode innovante pour inclure une contrainte dynamique performante dans le placement optimal de prodution.

égration des EnR

Contraintes de sûreté renforcée 2000 Nouvelle formulation du problème FCUC

Conclusions

Plan de la présentation

Modélisation

Intégration des EnR

3 Contraintes de sûreté renforcées

- 4 Nouvelle formulation du problème FCUC
 - Décomposition de Benders pour le problème FCUC
 - Modèle de plans sécants pour le creux de fréquence
 - Cas d'étude
 - Comparaison avec une contrainte indirecte

Modélisation Intégration des EnR

des EnR Contrain 0000

ntraintes de sûreté renforcées

Nouvelle formulation du problème FCUC

Conclusions

Décomposition de Benders pour le problème FCUC

 $q-q_m(x,y) \leq 0, \quad \forall m=1,\ldots,M.$

- $\min_{x \in \mathbb{R}^{N_1}, y \in \{0,1\}^{N_2}} f_1(x) + f_2(y)$
- sous contraintes $G(x, y) \le 0$, H(x, y) = 0,

- $\mathbf{y} \quad \rightarrow \mathsf{\acute{e}tat} \mathsf{ des} \mathsf{ groupes}$
- $x \rightarrow puissance (MW)$
- $q_m \rightarrow \text{creux}$ de fréquence (Hz)
- $\underline{q} \rightarrow \text{seuil de sûreté (Hz).}$

Nouvelle formulation du problème FCUC 00

Décomposition de Benders pour le problème FCUC

 $q-q_m(x,y) \leq 0, \quad \forall m=1,\ldots,M.$

- $\min_{x \in \mathbb{R}^{N_1}, y \in \{0,1\}^{N_2}} f_1(x) + f_2(y)$
- sous contraintes $G(x, y) \leq 0$, H(x, y) = 0,

- \rightarrow état des groupes y
- \rightarrow puissance (MW) х
- \rightarrow creux de fréquence (Hz) q_m
- \rightarrow seuil de sûreté (Hz). q

ModélisationIntégration des EnR00000000

es EnR Contrainte 0000

itraintes de sûreté renforcées

 $q-q_m(x,y) \leq 0, \quad \forall m=1,\ldots,M.$

Nouvelle formulation du problème FCUC

Conclusions

Décomposition de Benders pour le problème FCUC

- $\underset{x \in \mathbb{R}^{N_1}, y \in \{0,1\}^{N_2}}{\text{minimiser}} \quad f_1(x) + f_2(y)$
- sous contraintes $G(x, y) \le 0$, H(x, y) = 0,

- $\mathbf{y} \longrightarrow ext{état} ext{ des groupes}$
- $x \rightarrow puissance (MW)$
- $q_m \rightarrow \text{creux}$ de fréquence (Hz)
- $\underline{q} \rightarrow \text{seuil de sûreté (Hz).}$

Nouvelle formulation du problème FCUC 00

Décomposition de Benders pour le problème FCUC

- \rightarrow état des groupes y
- \rightarrow puissance (MW) х
- \rightarrow creux de fréquence (Hz) q_m
- \rightarrow seuil de sûreté (Hz). q

 $\min_{x \in \mathbb{R}^{N_1}, y \in \{0,1\}^{N_2}} f_1(x) + f_2(y)$ sous contraintes $G(x, y) \leq 0$, H(x, y) = 0,

 $q-q_m(x,y) \leq 0, \quad \forall m=1,\ldots,M.$

 $x \in \mathbb{R}^{N_1}, y \in \{0,1\}^{N_2}$

sous contraintes G(x, y) < 0.

Nouvelle formulation du problème FCUC

Décomposition de Benders pour le problème FCUC

 $q-q_m(x,y) \leq 0, \quad \forall m=1,\ldots,M.$

- \rightarrow état des groupes y minimiser $f_1(x) + f_2(y)$ х
 - \rightarrow puissance (MW)
 - \rightarrow creux de fréquence (Hz) q_m
 - \rightarrow seuil de sûreté (Hz). q

H(x, y) = 0,

lodelisation Intégration des EnK Contraintes de sûreté renfo 000 0000 0000

minimiser

 $x \in \mathbb{R}^{N_1}, y \in \{0,1\}^{N_2}$

Nouvelle formulation du problème FCUC

Conclusions

Décomposition de Benders pour le problème FCUC

 $f_1(x) + f_2(y)$

- $\mathbf{y} \longrightarrow \mathsf{\acute{e}tat} \mathsf{ des} \mathsf{ groupes}$
- $x \rightarrow puissance (MW)$
- $q_m \rightarrow \text{creux}$ de fréquence (Hz)
 - \rightarrow seuil de sûreté (Hz).

sous contraintes $G(x, y) \le 0,$ $\underline{q} \to \underline{q}$ H(x, y) = 0, $\underline{q} - q_m(x, y) \le 0, \quad \forall m = 1, \dots, M.$

$\epsilon~\rightarrow$ Tolérance de convergence

odélisation Intégration des EnR Contraintes de sûreté rer 000 0000 0000

minimiser

 $x \in \mathbb{R}^{N_1}, y \in \{0,1\}^{N_2}$

Nouvelle formulation du problème FCUC

Conclusions

Décomposition de Benders pour le problème FCUC

 $f_1(x) + f_2(y)$

- $\mathbf{y} \quad \rightarrow \mathsf{\acute{e}tat} \mathsf{ des} \mathsf{ groupes}$
- $x \rightarrow puissance (MW)$
- $q_m \rightarrow \text{creux}$ de fréquence (Hz)
 - \rightarrow seuil de sûreté (Hz).

sous contraintes $G(x, y) \le 0$, \underline{q} -H(x, y) = 0, $\underline{q} - q_m(x, y) \le 0$, $\forall m = 1, \dots, M$.

$\epsilon~\rightarrow$ Tolérance de convergence

Décomposition de Benders pour le problème FCUC

minimiser $f_1(x) + f_2(y)$

 $x \in \mathbb{R}^{N_1}, y \in \{0,1\}^{N_2}$

sous contrain

Nouvelle formulation du problème FCUC

\rightarrow état des groupes y

- \rightarrow puissance (MW) х
- \rightarrow creux de fréquence (Hz) q_m

$$\rightarrow$$
 seuil de sûreté (Hz).

tes
$$G(x, y) \leq 0,$$
 $\underline{q} - H(x, y) = 0,$
 $\underline{q} - q_m(x, y) \leq 0, \quad \forall m = 1, \dots, M.$

$\epsilon \rightarrow \text{Tolérance de convergence}$

Modélisation Intégration de 0000 0000

ion des EnR Cor 00

ontraintes de sûreté renforcées

Nouvelle formulation du problème FCUC

Conclusions

Nouvelle formulation du problème FCUC

Master problem : UC $c^* = \underset{y \in Y}{\text{minimiser}} \quad \mathcal{V}(y) + f_2(y)$ sous contraintes $G(x, y) \leq 0$, H(x, y) = 0, Coupe de faisabilité, Coupe d'optimalité.

Slave problem : FCED (sur l'horizon d'optimisation)

$$\begin{split} \mathcal{V}(\bar{y}^i) &= \underset{x \in X}{\text{minimiser}} \quad f_1(x) \\ \text{sous contraintes} \quad G(x, \bar{y}^i) \leq 0, \\ \quad H(x, \bar{y}^i) &= 0, \\ \quad \frac{q}{2} - q_m(x, \bar{y}^i) \leq 0, \quad \forall m = 1, \dots, M. \end{split}$$

Modélisation Intégration d

tion des EnR Co oc

ontraintes de sûreté renforcées

Nouvelle formulation du problème FCUC OOOOOOO Conclusions 000

Nouvelle formulation du problème FCUC

Master problem : UC $c^* = \underset{y \in Y}{\text{minimiser}} \quad \mathcal{V}(y) + f_2(y)$ sous contraintes $G(x, y) \leq 0$, H(x, y) = 0, Coupe de faisabilité, Coupe d'optimalité.

Slave problem : FCED (sur l'horizon d'optimisation)

 $\mathcal{V}(\bar{y}^{i}) = \underset{x \in X}{\text{minimiser}} \quad f_{1}(x)$ sous contraintes $G(x, \bar{y}^{i}) \leq 0,$ $H(x, \bar{y}^{i}) = 0,$ $\underline{q} - q_{m}(x, \bar{y}^{i}) \leq 0, \quad \forall m = 1, \dots, M.$

 Modélisation
 Intégration des EnR
 Contraintes de sûreté renforcées
 No

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Nouvelle formulation du problème FCUC

Conclusions 000

Modélisation Intégration des EnR Contraintes de sûreté renforcées Nouvelle formulation du problème FCUC Conclusio

Modélisation Intégration des EnR Contraintes de sûreté renforcées Nouvelle formulation du problème FCUC Conclusio

Modélisation Intégration des EnR Contraintes de sûreté renforcées Nouvelle formulation du problème FCUC Conclusion

Nouvelle formulation du problème FCUC

Modèle de plans sécants pour le creux de fréquence

$$\underline{q} - q_m(x) \le 0$$

$$\check{q}_m^{\ell}(x) = q_m^{\ell} + \langle s_m^{\ell}, x - x^{\ell} \rangle$$

$$\check{q}_m^{L}(x) = \min_{1 \le \ell \le L} \left\{ q_m^{\ell} + \langle s_m^{\ell}, x - x^{\ell} \rangle \right\}$$
envergence : $\check{q}_m^{L}(x^{\ell+1}) - q_m(x^{\ell+1}) \le \epsilon$

Estimateur "linéaire" du creux de fréquence

→ x (Puissance)

Slave problem					
Modélisation 0000	Intégration des EnR 0000	Contraintes de sûreté renforcées	Nouvelle formulation du problème FCUC	Conclusions	

$$\begin{aligned} \mathcal{V}(y) &= \min_{x \in X, w \in Y} \quad f_1(x) \\ \text{s.t.} \quad G(x, w) \leq 0, \\ H(x, w) &= 0, \\ \frac{q}{2} - q_m^\ell(\bar{y}_{-m}^i) - \langle s_m^\ell(\bar{y}_{-m}^i), x - x^\ell \rangle \leq 0, \quad \forall \ell = 1 \dots L, \forall m = 1, \dots, M, \\ w &= \bar{y}^i. \end{aligned}$$

Slave r	problem				
	0000	0000		000	
Modélisation			Nouvelle formulation du problème ECLIC		

$$\mathcal{V}(y) = \min_{x \in X, w \in Y} f_1(x)$$

s.t. $G(x, w) \leq 0$,
 $H(x, w) = 0$,
 $\lambda^* \longleftrightarrow \frac{q}{w} - q_m^{\ell}(\bar{y}_{-m}^i) - \langle s_m^{\ell}(\bar{y}_{-m}^i), x - x^{\ell} \rangle \leq 0$, $\forall \ell = 1 \dots L, \forall m = 1, \dots, M$,

 $\text{Convergence:} \ \check{\pmb{q}}_{\pmb{m}}^{\pmb{L}}(x^{\ell+1}) - \pmb{q}_{\pmb{m}}(x^{\ell+1}) \leq \epsilon \Rightarrow \left(\tilde{x}^i, \mathcal{V}^i, \lambda^i \right) \parallel \bar{y}^i \text{ irréalisable}$

Modélisation	Intégration des EnR	Contraintes de sûreté renforcées	Nouvelle formulation du problème FCUC	
			0000000	

Cas d'étude

 Modélisation
 Intégration des EnR
 Contraintes de sûreté renforcées
 Nouvelle formulation du problème FCUC

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000<

Redispatch du *Slave* \rightarrow rapide, optimal et efficace !

tégration des EnR 000 ontraintes de sûreté renforcée

Nouvelle formulation du problème FCUC

Conclusions

tégration des EnR 000 ontraintes de sûreté renforcée

Nouvelle formulation du problème FCUC

Conclusions

tégration des EnR 000 ontraintes de sûreté renforcée

Nouvelle formulation du problème FCUC

Conclusions

tégration des EnR 000 ontraintes de sûreté renforcées

Nouvelle formulation du problème FCUC

Conclusions

tégration des EnR 000 ontraintes de sûreté renforcée

Nouvelle formulation du problème FCUC

Conclusions 000

Ouverture vers une amélioration de la convergence

Modélisation 0000 tégration des EnR

Contraintes de sûreté renforcée

Nouvelle formulation du problème FCUC

Conclusions

Ouverture vers une amélioration de la convergence

Modélisation 0000 tégration des EnR

Contraintes de sûreté renforcé

Nouvelle formulation du problème FCUC

Conclusions

Ouverture vers une amélioration de la convergence

Modélisation 0000 tégration des EnR

Contraintes de sûreté renforc

Nouvelle formulation du problème FCUC

Conclusions

Ouverture vers une amélioration de la convergence

Objectif 4 : Proposition d'une formulation du problème FCUC compatible avec les contraintes opérationnelles ✗, tenant compte de la dynamique du système ✓, et capable d'assurer l'optimalité ✓.

Vitesse de convergence de l'outil à ameliorer.

Modélisation Intégration de 0000 0000 EnR Contraintes de sûre

Nouvelle formulation du problème FCU

Conclusions

Plan de la présentation

Modélisation

- Intégration des EnR
- 3 Contraintes de sûreté renforcées
- 4 Nouvelle formulation du problème FCUC
- 5 Conclusions
 - Conclusions
 - Perspectives

Conclu	isions			
Modélisation 0000	Intégration des EnR 0000	Contraintes de sûreté renforcées	Nouvelle formulation du problème FCUC	Conclusions •୦୦

Modèle flexible

Hypothèses de concavité Modèle flexible Bonne convergence

Définition de coupes Formulation convexe Convergence lente Hypothèses de concavité Modèle flexible Bonne convergence

Modélisation 0000	Intégration des EnR 0000	Contraintes de sûreté renforcées	Nouvelle formulation du problème FCUC	Conclusions 000
Perspe	ectives			

Améliorer la convergence et les coupes de faisabilité

Darana	ativoa			
Modélisation 0000	Intégration des EnR 0000	Contraintes de sûreté renforcées	Nouvelle formulation du problème FCUC	Conclusions ○●○

Perspectives

Décomposition de Benders + Plans sécants + Euler explicite

Améliorer la convergence Etudier la concavité et les coupes de faisabilité

Améliorer la convergenceEtudier la concavitéPas variableet les coupes de faisabilitéParallèlisation

Améliorer la convergence et les coupes de faisabilité

Etudier la concavité

Pas variable Parallèlisation

Industrialisation pour des petits systèmes.

Améliorer la convergenceEtudier la concavitéPas variableet les coupes de faisabilitéParallèlisation

Industrialisation pour des petits systèmes.

Exploitation du savoir faire pour étudier l'impact des EnR intermittentes dans les grands systèmes.

0000	0000	0000	00000000	000
	OOOO		Nouvelle formulation du probleme FCUC	000

