Measurements, models and extractions

Contents

- → Models
- → Linear part
- → Nonlinear part
- → Current measurements
- → S-parameter measurements
- → Power measurements
- → Noise
- → Verification

Ways of modeling

- → Physical models: Particle models or semiconductor equations
- → Table based models: Bias dependentSparameters are saved in a table
- → Mathematical models: Transfer behavior is described by mathematical functions
- → Equivalent circuits: Physical behavior is emulated by lumped elements

Ways of modeling

Linear models

- → Description of DC behavior
- →Description of RF behavior, e.g. in dependence of bias point. Only small signal amplitudes close to bias point are allowed

Non-linear models

→ Large signal amplitudes and change of bias point (Harmonic balance).

Harmonic balance

Only linear elements

Only non-linear elements

HB is a hybrid between time- and frequency domain calculations.

Non-linear part is calculated In time domain, linearer part in frequency domain

Voltages and currents at each port are balanced, until they are equal for both part of network.

DC measurements

Transistor transfer curves

Gummel-Plots

RF measurements

S-parameter measurements

RF measurements

S-parameter measurements

Port 1

Port 2

Qualification

- → Pinch-off of transistor device
- →Enhancement or depletion mode
- →Slope and IV curves
- →Gate diode current
- →amplification s₂₁ and attenuation
- → Compression behavior
- →Other s-parameters < 0 dB

Composition FET und equivalent circuit

Small signal equivalent circuit

Enhanced small signal equivalent circuit

Parameter extraction

Extrinsic elements

Intrinsic elements

Parameter extraction

Optimization of intrinsic elements

Calcualtion of conductance *g*

De-embedding of voltages

$$\begin{split} V_{GS}' &= V_{GS} - I_{DS} R_S \\ V_{DS}' &= V_{DS} - I_{DS} \left(R_D + R_S \right) \end{split}$$

Parameter extraktion

Calculation of scaling and noise parameters

Description of intrinsic elements

Store the Simulation file

Extraction of extrinsic elements

Extraction of capacitances

$$V_{GS} < V_p$$

$$V_{DS} = 0 \,\mathrm{V}$$

Extraction of inductances and resistors

$$V_{GS} > 0 \,\mathrm{V}$$

$$V_{DS} = 0 \,\mathrm{V}$$

Extraction of intrinsic elements

$$\underline{\underline{S}} \to \underline{\underline{Z}} \qquad \qquad \underbrace{\underline{z}_{11} - j\omega L_G} \qquad \underline{\underline{z}_{12}} \\
\underline{\underline{z}_{21}} \qquad \underline{\underline{z}_{22}} - j\omega L_D$$

$$\underline{\underline{Z}} \to \underline{\underline{Y}} \qquad \qquad \underbrace{\underline{y}_{11} - j\omega C_{PG}} \qquad \underline{\underline{y}_{12}} \\
\underline{\underline{y}_{21}} \qquad \underline{\underline{y}_{22}} - j\omega C_{PD}$$

$$\underline{\underline{Y}} \to \underline{\underline{Z}} \Longrightarrow \begin{pmatrix} \underline{z}_{11} - R_S - R_G - j\omega L_S & \underline{z}_{12} - R_S - j\omega L_S \\ \underline{z}_{21} - R_S - j\omega L_S & \underline{z}_{22} - R_S - R_D - j\omega L_S \end{pmatrix}$$

Extraction of intrinsic elements

Extraction of intrinsic elements

Calculation of output conductance

Extraction of output conductance *g* using optimizing process

Uds[V]

-0.5

Ugs[V]

Extraction of Is and n

$$\operatorname{Re}\left\{\underline{y}_{12}\right\} = -\frac{\mathrm{d}I_{\mathrm{d1}}}{\mathrm{d}U_{\mathrm{GD}}} = -\frac{I_{\mathrm{S}}}{nU_{\mathrm{t}}} \exp\left(\frac{U_{\mathrm{GD}}}{nU_{\mathrm{t}}}\right)$$

Outer and inner voltages

$$\begin{split} V_{GS}' &= V_{GS} - I_{DS} R_S \\ V_{DS}' &= V_{DS} - I_{DS} \left(R_D + R_S \right) \end{split}$$

Description of intrinsic elements

$$c_{\text{GS}} = \begin{cases} k_{\text{h}} + k_{\text{g}} U_{\text{DS}} + x_{20} & U_{\text{DS}} > 0 \\ k_{\text{h}} + x_{20} & \text{sonst} \end{cases}$$

$$k_{\rm h} = k_a \left(\exp \left(k_b (U_{DS} - k_c)^2 \right) + k_d \left(\tanh \left(k_e (U_{DS} - k_f) \right) + 1 \right)$$

$$k_a = \begin{cases} x_0 (U_{GS} - x_1)^2 & U_{GS} \ge x_1 \\ 0 & \text{sonst} \end{cases}$$

$$k_{\rm b} = x_2 \left(\tanh \left(x_3 \left(U_{GS} - x_{17} \right) \right) + 1 \right)$$

$$k_{\rm c} = x_4 \exp(x_5(U_{\rm GS} - x_6)^2)$$

$$k_{\rm d} = x_7 \left(\tanh \left(x_{21} \left(U_{\rm GS} - x_8 \right) \right) + 1 \right)$$

$$k_{\rm e} = x_9 (U_{\rm GS} - x_{10})^2 + x_{11}$$

$$k_{\rm f} = x_{12} \exp(x_{13}(U_{\rm GS} - x_{14})^2) + x_{18}$$

$$k_{\rm g} = x_{15} \exp(x_{16}(U_{\rm GS} - x_{19})^2)$$

$$Q_1(u_1) = \int_{u_{10}}^{u_1} c(\widetilde{u}_1) d\widetilde{u}_1$$

$$\Delta Q = \oint_{\partial\Omega} c(\widetilde{u}_1) d\widetilde{u}_1 = 0$$

$$Q_{2}(u_{1}, u_{2}) = \int_{u_{10}}^{u_{1}} c(\widetilde{u}_{1}, u_{2}) d\widetilde{u}_{1} + Q'_{1}(u_{2})$$

Defined charge cycle

Trans elements

$$C(u_1, u_2) = \sum_{i=0}^{n} c_i(u_1) T_i(u_2)$$

Complete gate current

$$i_{\rm G} = i_{\rm GS} + i_{\rm GD}$$

$$u_{\rm GS} = U_{\rm GS} + u_{\rm GS} \Rightarrow \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t} = \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t}$$

GS-part of gate current
$$i_{GS} = \frac{dQ_{GS}}{dt} = C'_{GS}(u_{GS}, u_{DS}) \frac{du_{GS}}{dt}$$

$$i_{\rm GS} = C'_{\rm GS} (U_{\rm GS} + u_{\rm GS}, U_{\rm DS} + u_{\rm DS}) \frac{du_{\rm GS}}{dt}$$

Taylor-series

$$C'_{GS}(U_{GS} + u_{GS^{\sim}}, U_{DS} + u_{DS^{\sim}}) = C'_{GS}(U_{GS}, U_{DS})$$

$$+ \frac{\partial C'_{GS}(u_{GS}, u_{DS})}{\partial u_{GS}} \Big|_{\substack{u_{GS} = U_{GS} \\ u_{DS} = U_{DS}}} u_{GS^{\sim}}$$

$$+ \frac{\partial C'_{GS}(u_{GS}, u_{DS})}{\partial u_{DS}} \Big|_{\substack{u_{GS} = U_{GS} \\ u_{DS} = U_{DS}}} u_{DS^{\sim}} + \dots$$

GS-part of gate current
$$i_{GS} = c_{GS} (U_{GS}, U_{DS}) \frac{du_{GS}}{dt}$$

$$i_{\rm G} = \frac{\mathrm{d}Q(u_{\rm GS}, u_{\rm DS})}{\mathrm{d}t} = \frac{\partial Q(u_{\rm GS}, u_{\rm GD})}{\partial u_{\rm GS}} \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t} + \frac{\partial Q(u_{\rm GS}, u_{\rm GD})}{\partial u_{\rm GD}} \frac{\mathrm{d}u_{\rm GD}}{\mathrm{d}t}$$

Due to designation of 2 voltages of Vgs, Vds and Vgd, the third voltage is always defined!

Case 1: Gate charge is known

$$Q_G = au_{GS}^2 + bu_{GS}u_{DS} + au_{DS}^2$$

$$i_{\rm G} = \frac{\mathrm{d}Q\left(u_{\rm GS}, u_{\rm DS}\right)}{\mathrm{d}t} = \frac{\partial Q_{\rm G}\left(u_{\rm GS}, u_{\rm GD}\right)}{\partial u_{\rm GS}} \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t} + \frac{\partial Q_{\rm G}\left(u_{\rm GS}, u_{\rm GD}\right)}{\partial u_{\rm GD}} \frac{\mathrm{d}u_{\rm GD}}{\mathrm{d}t}$$

$$u_{\rm DS} = f \cos(\omega t)$$
 $u_{\rm GS} = e \sin(\omega t)$

$$i_{\rm G} = \omega (A \sin(2\omega t) + B \cos(2\omega t))$$
 $A = ae^2 - cf^2$ $B = bef$

Pure capacitive gate current, no DC part

Case 2: The capacitances are known

$$c_{\mathrm{DS}}(u_{\mathrm{GS}}, u_{\mathrm{DS}}) = \frac{\partial Q_{\mathrm{G}}}{\mathrm{d}u_{\mathrm{DS}}}\Big|_{u_{\mathrm{GS}} = \mathrm{const.}} = bu_{\mathrm{GS}} + 2cu_{\mathrm{DS}}$$

$$c_{\text{GS}}(u_{\text{GS}}, u_{\text{DS}}) = \frac{\partial Q_{\text{G}}}{du_{\text{GS}}}\Big|_{u_{\text{DS}} = \text{const.}} = 2au_{\text{GS}} + bu_{\text{DS}}$$

$$i_{GS} = \omega(C + D\sin(2\omega t) + C\cos(2\omega t))$$

$$C = 0.5bef$$

$$D = ae^{2}$$

$$i_{GD} = \omega(-C + E\sin(2\omega t) + C\cos(2\omega t))$$

$$E = -cf^{2}$$

DC current parts, which compensate each other

$$i_{R} = \dot{q} = C \cdot \dot{V}$$

$$V_{R} = i_{R}R = CR \cdot \dot{V}$$

Example

Calculation of S-parameters using currents and voltages

Waves in an out of port n

$$a_n = \frac{V_n^{in}}{\sqrt{Z_{Ln}}} = I_n^{in} \sqrt{Z_{Ln}}$$
 $b_n = \frac{V_n^{out}}{\sqrt{Z_{Ln}}} = I_n^{out} \sqrt{Z_{Ln}}$

$$b_n = \frac{V_n^{out}}{\sqrt{Z_{Ln}}} = I_n^{out} \sqrt{Z_{Ln}}$$

$$u_n = \frac{V_n}{\sqrt{Z_{Ln}}} = \frac{V_n^{in} + V_n^{out}}{\sqrt{Z_{Ln}}} = a_n + b_n$$

$$i_n = I_n \sqrt{Z_{Ln}} = (I_n^{in} - I_n^{out}) \sqrt{Z_{Ln}} = a_n - b_n$$

$$\Rightarrow \frac{a_n = \frac{1}{2}(u_n + i_n)}{b_n = \frac{1}{2}(u_n - i_n)} \Rightarrow \frac{\text{S-Matrix}}{\|b\| = \|s\| \cdot \|a\|} \xrightarrow{\text{Example}} \frac{\text{Example}}{\left\|s_{11} = \frac{b_1}{a_1}\right\|_{a_{2=0}}} \left\|s_{11,dB} = 20 \cdot \log \frac{u_1 - i_1}{u_1 + i_1}\right\|$$

$$||b|| = ||s|| \cdot ||a||$$

$$\left| s_{11} = \frac{b_1}{a_1} \right|_{a_{2=0}} \left| s_{11,dB} = 20 \cdot \log \frac{u_1 - u_2}{u_1 + u_2} \right|$$

Mag(s₁₁), simulated using Small signal and HB testbench for very low input power (-50 dBm)

Phase(s₁₁), simulated using Small signal and HB testbench for very low input power (-50 dBm)

Needful things

Linearize exp functions

$$f(x) = \begin{cases} \exp(x) & x \le x_0 \\ mx + b & x > x_0 \end{cases}$$

Function must be continuous at x_0

$$f_1(x_0) = f_2(x_0)$$

$$\left. \frac{df_1}{dx} \right|_{x_0} = \frac{df_2}{dx} \right|_{x_0}$$

$$\Rightarrow$$
 $b = \exp(x_0)(1-x_0)$

$$b = \exp(x_0)(1-x_0) \Longrightarrow f_2(x) = \exp(x_0)(x+1-x_0)$$

Noise sources

Thermal noise

$$\left\langle i_{th}^{2}\right\rangle =\frac{4kT_{0}}{R}\Delta f$$

Shotnoise

$$\left\langle i_{shot}^{2}\right\rangle =2qI_{D}\Delta f$$

1/f (flicker)-
noise
$$\langle i_{1/f}^2 \rangle = KF \frac{I_D^{AF}}{f^{FFE}} \Delta f$$

Popcorn (burst)noise

$$\left\langle i_{burst}^{2} \right\rangle = KB \frac{I_{D}^{CF}}{1 + \left(\frac{f}{f_{CF}}\right)^{2}} \Delta f$$

Channel noise

$$\left\langle i_c^2 \right\rangle = \frac{8kTg_m}{3} \Delta f$$

Noise equivalent ciruit

Noisy 2-ports

Transformation matrix

Noise matrix

Correlation matrix, calculation of noise power

$$\left[\underline{C}\right]^{(a)} = \frac{1}{4kT\Delta f} \left(\begin{bmatrix} \underline{v}_i \\ \underline{i}_i \end{bmatrix} \begin{bmatrix} \underline{v}^* & \underline{i}^*_i \end{bmatrix} \right)$$

Separation of noise sources

Calculation of transformation fucntion

Network N Y-Matrix **Adjoint network transposed Y-Matrix**

Current transforming function

$$\alpha_{i,jk} = \frac{\dot{i}_i}{\dot{i}_{jk}} = -\frac{\hat{v}_{jk}}{\hat{v}_q}$$

FET example

Noise current matrix

Channel noise

$$i_{7,5} = \sqrt{\frac{1}{R_s}} \qquad i_{7,5} = \sqrt{g_{i_0}}$$

$$g_{i_{\rm c}} = \frac{T_{\rm sim}}{T_0} \frac{2}{3} g_{\rm m} + k_f \frac{I_c^{af}}{f^b 4k T_0}$$

1/f-noise

Tellegen Thoerem

Tellegen Theorem for noisy n-ports

Adjoined network for calculation of transformation function

$$i_{Q_1} = v_q \cdot \underline{y}_{T,2 \times 2_{1,1}}$$
 and $i_{Q_2} = v_q \cdot \underline{y}_{T,2 \times 2_{2,2}}$

Tellegen Theorem

$$\begin{bmatrix} i_{Q1} \\ \vdots \\ i_{Q10} \end{bmatrix} = \begin{bmatrix} y & \cdots & y \\ \vdots & \ddots & \vdots \\ y & \cdots & y \\ & \vdots & \ddots & \vdots \\ y & \cdots & y \\ & & \vdots & \ddots & \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_{10} \end{bmatrix}$$

Solving the equation system for the voltages using the Gaussian algorithm

Voltage transformation factor

One single noise source at Eingang, one at output

$$[T]^{(y\to a)} = \begin{bmatrix} 0 & -\frac{1}{\underline{y}_{2\times 2_{21}}} \\ 1 & -\frac{\underline{y}_{2\times 2_{11}}}{\underline{y}_{2\times 2_{21}}} \end{bmatrix} \longrightarrow \begin{cases} 1 \text{ current source,} \\ 1 \text{ voltage source} \end{cases}$$

at output

Correlation matrix

$$F = 1 - \frac{T_{\text{sim}}}{T_{\text{o}}} \frac{\left| \underline{y}_{\text{G}} \right|^{2} C_{11}^{(a)} + C_{22}^{(a)} + 2\Re \left\{ \underline{y}_{\text{G}} \underline{C}_{12}^{a} \right\}}{g_{\text{G}}}$$

$$R_{\rm n} = \frac{T_{\rm sim}}{T_0} C_{11}^a$$

Korrelationsmatrix

$$[\underline{C}]^{(a)} = [T]^{(y \to a)} [\underline{C}]^{(y)} [T]^{(y \to a)^{+}}$$

$$V_{NF} \left[dBm / \sqrt{Hz} \right] = 20 \log \left(\sqrt{\frac{T_{sim}}{T_0} \cdot i_0 i_0^*} \frac{50\Omega}{50\Omega \Re(\underline{y}_{2 \times 2_{22}}) + 1} \cdot 1000 \right)$$

$$\Gamma_{G_{\text{opt}}} = \frac{1 - \underline{y}_{G_{\text{opt}}} Z_0}{1 + \underline{y}_{G_{\text{opt}}} Z_0}$$

frequency f

Simulation and measurement of minimum noise figure.

Simulation and measurement of 1/noise.

Realized LNA

Minimum noise figure, simulation versus measurement.

Deviations 6x20 μm HEMT

$$4x50 \mu m \triangleleft 8x75 \mu m$$

 $V_{GS} = 0 \text{ V}, V_{DS} = 2 \text{ V}$

$$4x50 \mu m \nearrow 2x40 \mu m$$

 $V_{GS} = 0 V, V_{DS} = 0 V$

Comp 1x600 2.1 GHz, 26 V, 2.1 mA

PAE, 600 μ LDM OS device, class B bias, matched, f = 2.0 GHz

IMD 6x100 1.8 GHz, 2 MHz offset, 26 V, 2.1 mA

Times 5 multiplier

"FETplot.dc"

"FETplot.dc"

"Riintr.dat"

Switching problems

Burn-in effects

Scaling of extrinsic elements

Scaling of extrinsic elements

$$S_E(N) = a_{EN} \cdot N + b_{EN}$$

$$S_E(W_t) = a_{EW} \cdot W_t + b_{EW}$$

$S_{E}(N)$	$S_{E}(W)$	a _{EN}	\mathbf{b}_{EN}	\mathbf{a}_{EW}	$\mathbf{b}_{\mathbf{EW}}$
GG	GG	0.18	0.17	0.0	0.98
GD	GD	0.25	0.0	0.019	0.076
GS	GS	0.27	-0.04	0.024	-0.11
1/LG	LG	0.0	0.993	0.004	0.713
1/LD	LD	0.0	0.895	0.005	0.67
LS	1/LS	0.31	-0.46	0.006	0.68

Scaling of intrinsic elements

$$c_{old} = \frac{8x75\mu m}{4x50\mu m} = 3$$

$$c = \frac{\sum_{V_{gs}, V_{ds}} \frac{G_{x}(V_{GS}, V_{DS})}{G_{ref}(V_{GS}, V_{DS})}}{n_{V_{GS}, V_{DS}}}$$

Scaling of intrinsic elements

Variation of gate finger number

Variation of gate finger width

Scaling of intrinsic elements

$$S_{I}(N) = a_{IN} \cdot N + b_{IN}$$

$$S_{I}(W) = a_{IWt} \cdot W + b_{IWt}$$

$$S_I(W) = a_{IWt} \cdot W + b_{IWt}$$

$$S_I(N,W) = S_I(N) \cdot S_I(W)$$

$S_{I}(N)$	$S_{I}(W)$	a_{IN}	$\mathbf{b_{IN}}$	\mathbf{a}_{IW}	$\mathbf{b_{IW}}$
Cgs	Cgs	0.22	0.116	0.018	0.129
Cgd	Cgd	0.28	-0.08	0.019	0.077
Cds	Cds	0.12	0.459	0.011	0.371
Gi	Gi	0.02	0.52	-0.06	3.878
G	$ \mathbf{G} $	0.31	-0.14	0.025	-0.15
Id	Id	0.25	0.0	0.02	0.01

$$c_{new} = S_I(N = 4 \rightarrow N = 8)$$

 $\cdot S_I(W_t = 50 \rightarrow W_t = 75)$
 $1.93 \cdot 1.49 = 2.88$

Thermal model

$$C_{TH} \frac{d\Delta T}{dt} = P - \frac{\Delta T}{R_{TH}}$$

$$P = I_D V_{DS}$$

$$I_{D} = \frac{V_{Rd1} - V_{Rd2}}{R_{D} (V_{GS}, V_{DS})}$$

4D spline interpolation

Accurate description of I_D(V_{GS}, V_{DS}, Tjunc)

$$f(\vec{x}) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} a_{ijk} x_1^i x_2^j x_3^k$$

• 64 unknown values, 8 points at same time

$$f, \frac{\partial f}{\partial x_i}, \frac{\partial^2 f}{\partial x_i \partial x_j} \bigg|_{i \neq j}, \frac{\partial^3 f}{\partial x_1 \partial x_2 \partial x_3}$$

DC verification (LDMOS example)

→Intersection in one point

7x100 μm device

Transient analysis

time, usec

Rth/Cth extraction

→Compare pulsed and CW currents at different temperatures

$$R_{TH} = \frac{T - T_{amb}}{V_{DS}I_{DS}}$$

→ Cth: Monitor current versus time

Thank you for you attention

→ Any questions?

