Measurements, models and extractions

I M S T

Contents

- \rightarrow Models
- \rightarrow Linear part
- \rightarrow Nonlinear part
- \rightarrow Current measurements
- \rightarrow S-parameter measurements
- \rightarrow Power measurements
- \rightarrow Noise
- \rightarrow Verification

Ways of modeling

- →Physical models: Particle models or semiconductor equations
- →Table based models: Bias dependentS-

parameters are saved in a table

→Mathematical models: Transfer behavior is

described by mathematical functions

→Equivalent circuits: Physical behavior is

emulated by lumped elements

Ways of modeling

Linear models

- →Description of DC behavior
- →Description of RF behavior, e.g. in dependence of bias point. Only small signal amplitudes close to bias point are allowed

Non-linear models

→Large signal amplitudes and change of bias point (Harmonic balance).

Harmonic balance

Only linear elements

Only non-linear elements

HB is a hybrid between time- and frequency domain calculations.

Non-linear part is calculated In time domain, linearer part in frequency domain

Voltages and currents at each port are balanced, until they are equal for both part of network.

DC measurements

1

M

Transistor transfer curves

╢

Gummel-Plots

RF measurements

S-parameter measurements

9 TOPAS extraction Feb-09 © IMST GmbH - All rights reserved

RF measurements

S-parameter measurements

1

Qualification

- →Pinch-off of transistor device
- \rightarrow Enhancement or depletion mode
- →Slope and IV curves
- →Gate diode current
- \rightarrow amplification s₂₁ and attenuation
- →Compression behavior
- \rightarrow Other s-parameters < 0 dB

Composition FET und equivalent circuit

Small signal equivalent circuit

M

╢

Enhanced small signal equivalent circuit

M

Parameter extraction

1

15 Models Feb-09 © IMST GmbH - All rights reserved

Parameter extraction

Parameterextraktion

Extraction of extrinsic elements

18 Models Feb-09 © IMST GmbH - All rights reserved

Extraction of intrinsic elements

$$\mathbb{E}_{22} - R_{S} - R_{D} - j\omega L_{S}$$

╢

Extraction of intrinsic elements

Extraction of intrinsic elements

Calculation of output conductance gd (HF) [S] **Extraction of output** conductance g using -0.2 0.2--0.15 0.15 optimizing process 0.1 0.1 -0.05 0.05 0.05 -0.0 0 0.5 0.5 1.5 g[mS] 2 2.5 -0.5 3 3.5 Ugs[V] Uds[V] -120120 gd (DC) [S] -100 100 -80 80 -60 -0.1 0.1-0.09-60 -0.09 40 -0.08 0.08 0.07 40 -0.07 20 -0.06 0.06 0.05 20 0.05 -0.04 0.04 -0.03 0.03 -0.02 0.5 -0.01 0.02 0.6 -0 0.01 . 0.01 0.4 1 0.2 -0.01 1.5 0 0.5 0.5 -0.2 1 -0.4 1.5 2.5-0.6 -0.5 Ugs[V] Ugs[V] -0.8 Uds[V] Uds[V]

Extraction of Is and n

Outer and inner voltages

Description of intrinsic elements

$$c_{\rm GS} = \begin{cases} k_{\rm h} + k_{\rm g} U_{\rm DS} + x_{20} & U_{\rm DS} > 0 \\ k_{\rm h} + x_{20} & \text{sonst} \end{cases}$$

$$k_{\rm h} = k_a \left(\exp \left(k_b (U_{DS} - k_c)^2 \right) \right) + k_d \left(\tanh \left(k_e (U_{DS} - k_f) \right) + 1 \right)$$

$$k_a = \begin{cases} x_0 (U_{\rm GS} - x_1)^2 & U_{\rm GS} \ge x_1 \\ 0 & \text{sonst} \end{cases}$$

$$k_{\rm b} = x_2 (\tanh(x_3(U_{GS} - x_{17})) + 1)$$

$$k_{\rm c} = x_4 \exp(x_5 (U_{\rm GS} - x_6)^2)$$

$$\begin{array}{c} 120 \\ U_{GS} = 0.4V \\ W_{GS} = 0.4V \\$$

$$Q_1(u_1) = \int_{u_{10}}^{u_1} c(\widetilde{u}_1) d\widetilde{u}_1 \qquad \qquad \Delta Q = \oint_{\partial \Omega} c(\widetilde{u}_1) d\widetilde{u}_1 = 0$$

Defined charge cycle

$$Q_2(u_1, u_2) = \int_{u_{10}}^{u_1} c(\widetilde{u}_1, u_2) d\widetilde{u}_1 + Q_1'(u_2)$$
 Trans elements

 $C(u_1, u_2) = \sum_{i=0}^{n} c_i(u_1) T_i(u_2)$

Complete gate current

$$i_{\rm G} = i_{\rm GS} + i_{\rm GD}$$

$$u_{\rm GS} = U_{\rm GS} + u_{\rm GS} \Rightarrow \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t} = \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t}$$

GS-part of gate current $i_{GS} = \frac{dQ_{GS}}{dt} = C'_{GS}(u_{GS}, u_{DS})\frac{du_{GS}}{dt}$

$$i_{\rm GS} = C'_{\rm GS} (U_{\rm GS} + u_{\rm GS}, U_{\rm DS} + u_{\rm DS}) \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t}$$

Taylor-series

$$C'_{GS} \left(U_{GS} + u_{GS^{\sim}}, U_{DS} + u_{DS^{\sim}} \right) = C'_{GS} \left(U_{GS}, U_{DS} \right)$$
$$+ \frac{\partial C'_{GS} \left(u_{GS}, u_{DS} \right)}{\partial u_{GS}} \bigg|_{\substack{u_{GS} = U_{GS} \\ u_{DS} = U_{DS}}} u_{GS^{\sim}}$$
$$+ \frac{\partial C'_{GS} \left(u_{GS}, u_{DS} \right)}{\partial u_{DS}} \bigg|_{\substack{u_{GS} = U_{GS} \\ u_{DS} = U_{DS}}} u_{DS^{\sim}} + \dots$$

GS-part of gate current
$$i_{GS} = c_{GS} (U_{GS}, U_{DS}) \frac{du_{GS}}{dt}$$

Due to designation of 2 voltages of Vgs, Vds and Vgd, the third voltage is always defined!

Case 1: Gate charge is known

$$Q_G = au_{\rm GS}^2 + bu_{\rm GS}u_{\rm DS} + au_{\rm DS}^2$$

$$\dot{i}_{\rm G} = \frac{\mathrm{d}Q(u_{\rm GS}, u_{\rm DS})}{\mathrm{d}t} = \frac{\partial Q_{\rm G}(u_{\rm GS}, u_{\rm GD})}{\partial u_{\rm GS}} \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t} + \frac{\partial Q_{\rm G}(u_{\rm GS}, u_{\rm GD})}{\partial u_{\rm GD}} \frac{\mathrm{d}u_{\rm GD}}{\mathrm{d}t}$$

$$u_{\rm DS} = f \cos(\omega t) \quad u_{\rm GS} = e \sin(\omega t)$$

$$E_{\rm G} = \omega (A \sin(2\omega t) + B \cos(2\omega t))$$
 $A = ae^2 - cf^2$ $B = bef$

Pure capacitive gate current, no DC part

Case 2: The capacitances are known

$$c_{\rm DS}(u_{\rm GS}, u_{\rm DS}) = \frac{\partial Q_{\rm G}}{\mathrm{d}u_{\rm DS}}\Big|_{u_{\rm GS}=\mathrm{const.}} = bu_{\rm GS} + 2cu_{\rm DS}$$

$$c_{\rm GS}(u_{\rm GS}, u_{\rm DS}) = \frac{\partial Q_{\rm G}}{\mathrm{d}u_{\rm GS}}\Big|_{u_{\rm DS}=\mathrm{const.}} = 2au_{\rm GS} + bu_{\rm DS}$$

$$i_{GS} = \omega (C + D \sin(2\omega t) + C \cos(2\omega t)) \qquad C = 0.5bef \qquad D = ae^2$$
$$i_{GD} = \omega (-C + E \sin(2\omega t) + C \cos(2\omega t)) \qquad E = -cf^2$$

DC current parts, which compensate each other

Calculation of S-parameters using currents and voltages

	. <u>VEC</u>	IFC .	VEC		VEC	
	VEC10 C	TIFC1 T	VEC21 1	TIFC2 1 1	VEC31 1	TIFC3 T
OUTPUT :	TP1ID=TP1	ELEM=R1	TP1ID=TP2	ELEM=R2	TP1ID=TP3	ELEM=R3
	· TP21D=gnd	PEN=1 · · ·	TP21D=gnd	•P FN=1 • • •	TP21D=gnd	(P.EN=1)
LONTL'EGN	. H1=1	.H1=1	H1=1	.H1=1	H1=1.	- H 1 = 1
LOUTEON	. H2=0	.H2=0	H2=0	.H2=0	H2=0	.H2=0
o11=VFC1/7.07+IFC1*7.07*1e-3	.H3≑0	.H3=0	Η3≑0	.H3=0	H3=0.	.H3=0
022=VFC4/7.07+1FC4*7.07*1e-3						
1611=VFC1/7/07-1FC1*7/07*1e-31						
1622≐VEC4/7:07-1EC4*7 07*1e-31						
:b21=VEC277:07-1EC2*7_07*1e+3:	. <u>V.F.C</u>	IEC				
+512 = VEO3/7 + 07 = 4EO3/7 + 07 + 16 = 3	. V.F.Ç.4	IFC4 .				
c11=20*log(b11/c11)	TP1ID=TP4	ELEM=R4				
-11 = -11/211	TP2ID=gnd	PIN=1				
.st(_ong=e(tyo))	H1=1	H1=1				
.szz≑zu*ic@(b22/o22)	H2=0	H2=0				
_sZ2_ong=b22/o22	H3=0	H3=0				
_s21=20*log(b21/o11)				· · · · · · · · · · · · · · · · · · ·		
_s21_ong=b21/o11						
_is12≐20*ilog(b12/o22)iiiiii		PF DESIDE	PF Differences	PSPEC		
is12_ang=b12/a22 total total total NH22 perce		TP11D=TP2	TP1/D≜TP1		2	
		TP21D=gnk	l'TP21D≐gindi	TP21D=gn	9	
		+ ELEM≐R2 +	H1=1	ELEM≢R2		
		H2=0 · · ·	· H2=Q · · ·			
FREQUENCY		. H3≑0	H3=0			
	0.10.40.1					
Small signal /						
	· · · · · · · ·	· · · · · · ·	· · · · · · ·		• •	
$-50 \mathrm{dRm}$						
	· · · ·) . · · · ·	BIAS1		452		
· PPLAN · · · · ·	50	BIPLAN	P. O	RLAN Lus-STER 2	• •	2005
1,401.08-31EF						

Mag(s_{11}), simulated using Small signal and HB testbench for very low input power (-50 dBm) Phase(s_{11}), simulated using Small signal and HB testbench for very low input power (-50 dBm)

Needful things

Linearize exp functions

$$f(x) = \begin{cases} \exp(x) & x \le x_0 \\ mx + b & x > x_0 \end{cases}$$
Function must be continuous at x_0

$$f_1(x_0) = f_2(x_0) \quad \frac{df_1}{dx} \bigg|_{x_0} = \frac{df_2}{dx} \bigg|_{x_0}$$

$$f(x_0) = mx_0 + b$$

$$m = \exp(x_0)$$

$$f_2(x) = \exp(x_0)(x + 1 - x_0)$$

M S

Noise sources

Thermal noise

$$\left\langle i_{th}^{2} \right\rangle = \frac{4kT_{0}}{R} \Delta f$$

Popcorn (burst)noise

$$\left\langle i_{burst}^{2} \right\rangle = KB \frac{I_{D}^{CF}}{1 + \left(\frac{f}{f_{CF}}\right)^{2}} \Delta f$$

Shot-
noise
$$\langle i_{shot}^2 \rangle = 2qI_D \Delta f$$

Channel noise

1/f (flicker)noise $\left\langle i_{1/f}^2 \right\rangle = KF \frac{I_D^{AF}}{f^{FFE}} \Delta f$

$$\left\langle i_c^2 \right\rangle = \frac{8kTg_m}{3}\Delta f$$

Noise equivalent ciruit

I M S

Noisy 2-ports

Transformation matrix

Noise matrix

Correlation matrix, calculation of noise power

$$\left[\underline{C}\right]^{(a)} = \frac{1}{4kT\Delta f} \left(\begin{bmatrix} \underline{v}_i \\ \underline{i}_i \end{bmatrix} \begin{bmatrix} \underline{v}_i & \underline{i}_i^* \end{bmatrix} \right)$$

Separation of noise sources

Calculation of transformation fucntion

Network N Y-Matrix Adjoint network transposed Y-Matrix

Current transforming function

Tellegen Thoerem

1

Tellegen Theorem for noisy n-ports

Adjoined network for calculation of transformation function

 $i_{Q_1} = v_q \cdot \underline{y}_{T,2 \times 2_{1,1}}$ and $i_{Q_2} = v_q \cdot \underline{y}_{T,2 \times 2_{2,2}}$

Tellegen Theorem

Solving the equation system for the voltagesusing the Gaussian algorithm

Voltage transformation factor

Correlation matrix

$$F = 1 - \frac{T_{\text{sim}}}{T_{0}} \frac{\left|\underline{y}_{\text{G}}\right|^{2} C_{11}^{(a)} + C_{22}^{(a)} + 2\Re\left\{\underline{y}_{\text{G}} \underline{C}_{12}^{a}\right\}}{g_{\text{G}}}$$

Korrelationsmatrix
$$\left[\underline{C}\right]^{(a)} = \left[T\right]^{(y \to a)} \left[\underline{C}\right]^{(y)} \left[T\right]^{(y \to a)^{+}}$$

$$V_{\text{NF}} \left[d\text{Bm}/\sqrt{\text{Hz}}\right] = 20\log\left(\sqrt{\frac{T_{\text{sim}}}{T_{0}} \cdot i_{0} i_{0}^{*} \frac{50\Omega}{50\Omega\Re\left(\underline{y}_{2\times 2_{22}}\right) + 1} \cdot 1000}\right)$$

$$\Gamma_{G_{\text{opt}}} = \frac{1 - \underline{y}_{G_{\text{opt}}} Z_{0}}{1 + \underline{y}_{G_{\text{opt}}} Z_{0}}$$

╢

Realized LNA

Minimum noise figure, simulation versus measurement.

Deviations 6x20 μm HEMT

 $V_{GS} = 0 V, V_{DS} = 2 V$

1

 $4x50 \,\mu m \bigtriangledown 2x40 \,\mu m$ $V_{GS} = 0 V, V_{DS} = 0 V$

 $4x50 \ \mu m \stackrel{>}{\sim} 2x40 \ \mu m$ $V_{GS} = -0.8 \ V, \ V_{DS} = 2 \ V$

Comp 1x600 2.1 GHz , 26 V, 2.1 mA

PAE, 600um LDM OS device, class B bias, matched, f = 2.0 GHz

IMD 6x100 1.8 GHz, 2 MHz offset, 26 V, 2.1 mA

Times 5 multiplier

Oscillations

╢

"FETplot.dc"

Oscillations

"Cgsintr.dat"

"FETplot.dc"

Oscillations

"Riintr.dat"

Oscillations

"Riintr.dat"

Switching problems

M ST

Burn-in effects

Scaling of extrinsic elements

$$S_E(N) = a_{EN} \cdot N + b_{EN}$$

$$S_E(N,W_t) = S_E(N) \cdot S_E(W_t)$$

$$S_E(W_t) = a_{EW} \cdot W_t + b_{EW}$$

$S_E(N)$	$S_E(W)$	a _{EN}	b _{EN}	a _{EW}	$\mathbf{b}_{\mathbf{EW}}$
GG	GG	0.18	0.17	0.0	0.98
GD	GD	0.25	0.0	0.019	0.076
GS	GS	0.27	-0.04	0.024	-0.11
1/LG	LG	0.0	0.993	0.004	0.713
1/LD	LD	0.0	0.895	0.005	0.67
LS	1/LS	0.31	-0.46	0.006	0.68

Scaling of intrinsic elements

$$c_{old} = \frac{8x75\,\mu m}{4x50\,\mu m} = 3$$

$$c = \frac{\sum_{V_{gs}, V_{ds}} \frac{G_x(V_{GS}, V_{DS})}{G_{ref}(V_{GS}, V_{DS})}}{n_{V_{GS}, V_{DS}}}$$

c_{GS} 8x75 -

Scaling of intrinsic elements

Scaling of intrinsic elements

$$S_{I}(N) = a_{IN} \cdot N + b_{IN}$$
$$S_{I}(W) = a_{IWt} \cdot W + b_{IWt}$$

$$S_{I}(N,W) = S_{I}(N) \cdot S_{I}(W)$$

$S_{I}(N)$	S _I (W)	a _{IN}	b _{IN}	a _{IW}	b _{IW}	
Cgs	Cgs	0.22	0.116	0.018	0.129	$c_{new} = S_I (N = 4 \rightarrow N = 8)$
Cgd	Cgd	0.28	-0.08	0.019	0.077	$\cdot S_t (W_t = 50 \rightarrow W_t = 75)$
Cds	Cds	0.12	0.459	0.011	0.371	1 93.1 49 - 2.88
Gi	Gi	0.02	0.52	-0.06	3.878	1.75 1.77 – 2.00
G	G	0.31	-0.14	0.025	-0.15	
Id	Id	0.25	0.0	0.02	0.01	

Thermal model

M

4D spline interpolation

Accurate description of I_D(V_{GS}, V_{DS}, Tjunc)

$$f(\vec{x}) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} a_{ijk} x_1^i x_2^j x_3^k$$

• 64 unknown values, 8 points at same time

$$f, \frac{\partial f}{\partial x_i}, \frac{\partial^2 f}{\partial x_i \partial x_j} \bigg|_{i \neq j}, \frac{\partial^3 f}{\partial x_1 \partial x_2 \partial x_3}$$

DC verification (LDMOS example)

Transient analysis

M
Rth/Cth extraction

→Compare pulsed and CW currents at different temperatures

$$R_{TH} = \frac{T - T_{amb}}{V_{DS} I_{DS}}$$

→Cth: Monitor current versus time

Thank you for you attention

 \rightarrow Any questions?

