

Ferroelectrics

Material Properties, Processing, and Microwave Applications

Spartak Gevorgian

Department of Microtechnology and Nanoscience Chalmers University of Technology Gothenburg, Sweden

> Norwegian IEEE MTT/AP Chapter SINTEF, Trondheim, March, 2006

Introduction

Materials (Bulk, Thick and thin Film)

Devices and Circuit Applications

Concluding Remarks: Problems and

Perspectives

What is this about?

Wired Communication New York 1921

Wireless Communication Gothenburg, Sweden 2001

Electronics DNA: Search for components with enhanced performances

Ferroelectrics: Multifunctional Dielectrics

Ferroelectric Compositions Considered for Microwave Applications

ABO₃ Perovskites: $Ca_xSr_{1-x}TiO_3$ $K_xLi_{1-x}TaO_3$ $K_xNa_{1-x}NbO_3$ $Pb_xZr_{1-x}TiO3$

Ferroelectric (polar) and paraelectric phases

Polarization of Paraelectric Perovskites

Nonlinear polarization

Field dependent permittivity

$$T = \frac{\varepsilon(0) - \varepsilon(E)}{\varepsilon(0)}$$

Ba_xSr_{1-x}TiO₃(BST) at Room Temperature x=0.1-1.0

Smolensky & Isupov (1954)

Ba_{0.8}Sr_{0.2}TiO₃+MgO. MgO: 0-10% From Doping to Composite

Su & Button (2004)

Ferroelectrics- Features Attractive for Microwave Applications-1 Dielectric properties: Permittivity ε (100-20000) - small size devices: Size $\sim 1/\sqrt{\epsilon}$ **Electric field dependent**tuneable and nonlinear devices typically 0.0001-0.05 Loss tangent tan^δ-**Tuning speed-**< 1.0 ns

Ferroelectrics- Features Attractive for Microwave Applications-2

Electrical properties:

Resistivity-Leakage currents-Breakedown field-Metalic conductivity-Bandgap-Mobility-

undoped >10 ⁸⁻ 10 ¹⁰ Ohm cm extremely low >50-100 kV/cm if highly doped (transparent electrode) Eg>3.0 eV **2D** electron gas at low temperature-15000cm²/Vs

Ferroelectric Material Technologies Considered for Microwave Device Fabrication

Bulk- single crystal and ceramics

Thick film- HTCC, LTCC

Thin film- single crystal polycrystalline

Bulk Single Crystal (SrTiO₃₎

Four Pole Tuneable Bandpass Filter Based on SrTiO₃ Discs

<u>SrTiO₃ disks</u> Diameter: 7.0 mm Thickness: 0.5 mm Plates: Cu/Ti

Deleniv et. al. Proc. EuMC'2002

Four Pole Tuneable Bandpass Filter Based on SrTiO₃ Discs

3 dB bandwidth-2.0%;Tuneability-8%; Losses-4.0 dB

Deleniv et. al. Proc. EuMC'2002

Bulk Ceramic Ba_xSr_{1-x}TiO₃

(Project MELODY)

Beam Steering Lens

Tageman et. al. Proc. EuMC'2005

Tuneable Chip Components: Resonators Capacitors and Delay Lines

LTCC and HTCC Ba_xSr_{1-x}TiO₃

(Project MELODY)

HTCC Phase Shifters in Project MELODY

Phase shifter type	f ₀ (GHz)	Circuit layout and size(in mm*mm)	Insertion Loss(dB)	ΔΦ(degree) _{100V}	Biasing field(V/µm)	FOM (degree/dB)	Estimated CQF* of the capacitor
Coupled Strip Line	30GHz	20*10	-2.5dB (averaged)	20°	1 V/μm	6-7°/dB	1.125(f=30GHz) (with conductor loss)
Coplanar waveguide	26GHz	40*20	-40dB (averaged)	>400°	2V/µm	12°/dB	3.306(f=26GHz) (with conductor loss)
Microstrip line loaded by BST capacitors	28GHz	20*15	-15dB (averaged)	125°	1V/μm	6º/dB	0.826(f=28GHz) (with conductor loss)
Reflection type phase shifter 1	26	North States	-10dB (averaged)	20°	1V/μm	1.7°/dB	0.092(f=26GHz) (with conductor loss)
Reflection type phase shifter 2	2.5GHz	25*15	-2.5dB (averaged)	49°	1V/μm	20°/dB	9.1(f=2.5GHz)** (with conductor loss)

LTCC OBJECTIVES

 Development of tunable ferroelectric LTCC <u>compositions</u> Sintering temperature: <950 °C

 ϵ =100-1000; tan δ < 0.01 at 2-50 GHz; Tunability >10%

• Development of <u>processing routes</u> for single and multilayer ferroelectric films with:

Thickness 5-50 µm; Area 100x100 mm²

Development of <u>fabrication routes</u> for electrodes

LTCC BSTO Performance

tanδ~f; (~0.12@25GHz)

~50deg/dB @3.5GHz

Measured Phase LTCC Shifter Performance

Matching shows weak dependance on DC biasing!!!

Tuneable Power Splitters

Coplanar Plate (CPS)

Parallel Plate

Tuneable Matching Networks

Port2

Thin film Ba_xSr_{1-x}TiO₃ (Chalmers)

D. Kuylenstierna

M. Norling

A. Vorobiev

A. Deleniv

Growth of BST films by laser ablation

PLD System -MC2 Process Lab Chalmers

Growth of BST films by rf magnetron sputtering

Nordiko 2000 Sputter

Substrates for ferroelectric microwave devices

<u>Crystalline:</u> MgO, LaAlO₃, Al₂O₃

<u>Polycrystalline:</u>Al₂O₃

Amorphous: Oxidized Silicon, Fused Silica

Metal: Pt, Au, Cu (with diffusion stop buffer)

TEM and SEM images of the BSTO films in Thin Film Parallel-Plate Varacotors

TEM image by Prof. E. Olsson, Chalmers

Test Structure Cross Section and Top Electrode

Varactor Performance at 1.0 MHz

A. Vorobiev, P. Rundqvist, K. Khamchane, and S. Gevorgian, Appl. Phys. Lett. 83, 3144 (2003)

Microwave Performance at V=0 and 20V

• No dispersion in permittivity and tuneability

• Tuneability > 40 %

Technology Comparison. E=0

Shown are also: Si varactor (Metelics, MSV34,060-C12, Q=6500 @ 50 MHz, V=-4V)

GaAs HBV (Darmstadt University of Technology, f_{cut-off}=370 GHz)

GaAs dual Schottky diode (UMS, DBES105a, f_{cut-off}=2.4 THz)

BSTO Potential for Tuneable TFBARs

Acoustic Impedances

Acoustic impedance

Real Part of Impedance (Measured)

Device Applications

Main Device Fabrication Steps (Prepatterning of bottom electrode)

Deposition prepatterning of Pt/Au/Pt (50/500/100nm) bottom electrode

Growth of BST film (300nm) by PLD 650 °C, 0.4 mbar Top electrode formation by lift-off process

Typical Varactor Structures

Tuneable Delay Lines

Tuneable Delay Line Performance

Lumped Element Tunable Resonators and Filters

(c)

(d)

Two-Pole Lumped Element Tunable Filter (simulated)

D. Kuylenstierna et. al, Si RFIC'2006

Single – Pole Lumped Element Filter (measured)

D. Kuylenstierna et. al, Si RFIC'2006

Tuneable Phase Shifters Mesured S-parameters

Relatively high losses due to steps and surface conductivity of Si

D. Kuylenstierna et. al, IEEE Micr. Wierless Comp. Letters

Tuneable Phase Shifters Mesured Phase Shift Under 15 V

D. Kuylenstierna et. al, IEEE Micr. Wierless Comp. Letters

Problems and Perspectives

Temperature Stabilization (Materials/design based)

Temperature Dependence (Materials/Design Based- Measured)

Temperature Stabilization (Circuit Topology Based)

Temperature Stabilization (Circuit Topology Based-Summation)

Perspective applications :

Project HiMission (EUREKA/MEDEA+/VINNOVA) Phase shifters Tuneable delay Lines Tuneable filters VCO

Project Nanostar (FP6, EU) Varactors Tuneable TFBARs VCOs

