

LTCC Packaging & Smart System Integration Horten 19.9.2008 *Kari Kautio*

OUTLINE

LTCC technology - processing and materials

Thermal management

Bare die assembly & sealing

Application areas & demonstrators

Fabrication of 3D- structures on LTCC

Packaging projects

LTCC Low Temperature Co-fired Ceramics

BENEFITS :

- high density, fine- line
- Good high frequency properties
- radiation / crosstalk management
- reliability & stability
- 3D capability

APPLICATION AREAS:

- telecom & wireless
- automotive
- sensor & opto packaging
- medical
- high speed signal processing
- military & space

Low temperature cofired ceramics (LTCC) Process Flow

4

LTCC Material Systems

- Several manufacturers: Du Pont , Heraeus, Ferro, CeramTec, NEC...
- LTCC tape is glass which is cast with organic additives on a polyester backing
- Different tape thicknesses can be used in the same substrate
- Metallization pastes for vias and conductors are matched to each tape
- Pure silver (Ag) is the mainly used low cost, high conductivity metallisation (Rs= 1...3 mohm/square, surface roughness Ra= 0.6μm)
- Ag/Pd or Ag/Pt is used for solderable conductors (Rs=20mohm/sq.)
- Au conductors are used for bondable conductors (Rs= 5mohm/sq.)

LTCC Tape Systems

ТАРЕ	Fired thickness [µm]	Permittivity Er	Tanδ [%]	TCE [ppm/K]
Ferro A6M	100, 200	5.9	0.12 (2.5 GHz)	>8
DuPont 951	40, 90, 130, 200	7.8	0.15 (10 MHz)	5.8
DuPont 943	105	7.4 (40GHz)	0.2 (40 GHz)	6.0
Heraeus CT2000	77	9.1	0.2 (2 GHz)	8.5
Heraeus HL2000	89	7.4	0.26 (2.5 GHz)	6.1
Heraeus CT 800	-	8.4	0.18 (1 kHz)	8.4
Heraeus CT707	105	6.4	0.46 (2.5 GHz)	8.1
Heraeus CT765	84	65	0.17 (2.5 GHz)	9.1
Heraeus CT702	-	5.3 (30GHz)	<0.2 (30 GHZ)	-
Heraeus CT703	-	7.0 (30GHz)	<0.2 (30GHZ)	-

Thermal conductivity 2...4 W/mK for all LTCC materials

Characterisation of novel LTCC materials for $\mu\text{-}$ wave and millimeter-wave frequencies

Mixed K LTCC resonator Q=150 (2 GHz)

Characterisation of Ferrite LTCC

Heralock self-constraining tape system ("Zero- Shrink")

- + X,Y shrinkage only 0.3%
- + Shrinkage tolerance 0.03% enables fine- pitch component assembly
- + Excellent substrate flatness
- + Clad system enables Ni/Au plating (reliability of interconnections)
- Cavities are difficult to make
- Number of tape layers limited to 8 10

LTCC design limits

FEATURE	Production State-of-the art	Special applications
Number of tape layers	>20	>20
Substrate max. thickness	4mm	>4mm
Printed conductor line width / spacing	50 μm / 70 μm	40μm / 60 μm
photo-patterned line width / spacing	40μm / 50 μm	40μm / 50 μm
Via diameter	80 μm 200 μm	50 μm
via pitch	2.5 x via diameter	2 x via diameter
layer alignment tolerance	15 μm	10 µm
shrinkage tolerances (x,y)	typical +/- 0.1%	0.03% (zero shrink)
Thickness tolerance (z)	typical +/- 2%	typical +/- 2%

General design guidelines on VTT web pages

LTCC Patterning

•Screen printing is the main fabrication method

- co-fireable conductors, resistors and overglaze
- post-fireable conductors printed on fired substrate
- •Photoimageable thick film pastes
 - limited to special applications (higher cost)
 - co-fired Ag, post-fired Ag, Au, glass
 - HF- properties comparable to printed conductors
- •Etching of post-fired thick film or thin film metallization
 - 25 μm line and space is feasible.
 - limited to special applications (higher cost)
- •Electroless Ni/Au plating of thick film conductor
 - Improved wire bond and solder joint reliability
 - Requires a plateable Ag paste

Printed line width 50µm, via 80µm

Ni/Au plating on LTCC

Fine-line screen printing

Typically minimum line width and spacing is >100 μ m in volume production

Fine-line screen printing (50...70 μ m) is possible in LTCC production using:

- advanced screen technology
- fine-line ink (only a few types are available)
- optimized layout design
- careful process control (cleanliness etc.)

Printed inductor 35 μm line / 55 μm space

Trampoline Screen mesh 500, 15 μm wire

Photoimaged conductors

- •Minimum line width 40 $\mu\text{m},$ minimum space 50 μm
- Improved edge resolution
- •Line width tolerance: +/- 2 μ m (with high quality exposure mask)
- •Complicated process compared to screen printing

Thermal Management Thermal vias

- LTCC dielectric thermal conductivity is 3...5 W/mK (FR-4: 0.2W/mK)
- Ag via thermal conductivity is typically 300 W/mK
- 24 % area fraction of vias can be readily achieved
- thermal resistance reduced by 1/20

Thermal Management water cooling

•Efficient cooling method

•Difficult to arrange pumping for portable equipment

COOLING CHANNEL 1.5mm x 0.4mm

Thermal Management Thermal plug

Up to diameter 0.9mm hole can be filled with thermal plug paste

- Firing at 850°C
- Suitable for alumina and LTCC

Cross-section of diam. 0.9mm Ag plugs for LED array

Chip assembly on LTCC

FLIP-CHIP

Solder bump on the chip side is recommended, if available

- Au metallization on LTCC for Au/Sn or bumps (without flux)
- Ag/Pd metallization on LTCC for Pb/Sn bumps (with flux)

Gold stud bumps for prototyping

- Bumps can be made on the chip (>3mmx3mm) or on the LTCC
- Typical bump diameter 75 μ m (25 μ m wire), height 30 μ m
- joining by thermocompression, ultrasonics or adhesive

Stud-bumped substrate

CHIP&WIRE

- A well proven and reliable technology on thick film and LTCC
- The chip is usually die bonded using conductive or non-conductive epoxy
- Thin gold or aluminium wire (typically $25\mu m$) is used
- Alternatively Au ribbon for MMIC's

LTCC Sealing & hermeticity

- LTCC substrate itself is hermetic, stable and reliable
- Local hermetic sealing (Au/Sn solder) is possible
- Non-hermetic glob-top sealing
- Under fill support for flip-chip components
 - due to small TCE mismatch, underfill is often not needed

Why LTCC in RF- and Microwave Applications

- Low loss materials up to 100 GHz
- Controlled impedance (3-D design, precise geometry)
- Low Tf (Temperature coefficient of resonant frequency)
- Radiation / crosstalk management
- Integrated passive components
 - inductors -> 200 nH/layer (+/- 5%) capacitors -> 10 pF (+/- 5%) resistors -> 10 Ω - 10 M Ω , buried +/- 30%, surface +/- 1% filters, antennas, resonators

LTCC Antenna demonstrators

Patch antenna array with air cavity Communications Research Centre, Canada

24GHz dielectric resonator Carleton University, Canada

Patch antenna array (60GHz)

LTCC MEMS packaging

LTCC technology meets the technical requirements for MEMS packaging

- Good high frequency properties
- Reliability (good TCE match to Si, stability, hermeticity)
- 3D microstructures, fluidistics

MEMS switch in LTCC package

Pressure transmitter

MEMSPACK- project Zero- and First level Packaging of RF- MEMS

Packaging concepts for RF-MEMS

Critical packaging issues for RF- MEMS

- good RF- behaviour
- reliability
- low cost

TEMPO- project Technologies for the Miniaturisation and the Packaging of True Time Delay Modules

Thin-film RF-MEMS switches on LTCC platform were successfully demonstrated

LTCC is readily suitable for high frequency but surface quality is not good enough for the most demanding thin-film post-processing, such as RF- MEMS

Polishing of LTCC was developed to obtain the required criteria:

- LTCC as-fired roughness Rq= 600nm reduced to Rq = 14 nm
- Pore size: < 1 μ m²
- Pore depth: Rt < 200 nm
- Pore count: <30 pcs / mm²

LTCC in photonic packaging

- High packaging density, integration of high speed/low noise/high-power electronics close to photonic devices
- Accurate 3D structures passive alignment of photonic devices and fibres (cavities, grooves, holes, channels)
- Stable and hermetic substrate material
- Good power handling capability
- Hermetic sealing eliminates expensive metal package
- Cost effective

High-speed photo-detector array

Optical fibre passive alignment Punched & laminated fiber groove

Laser transmitter demonstrator

- Fibre groove nibbled to tape sheet with 150 μm round pin
- Lamination with low pressure
- Ag filled vias are used for laser die alignment

Optical fibre passive alignment Photoimaged fiber groove and alignment marks

Process:

•FODEL Photoimaged glass print- dry-print-dry,

up to six layers

•UV- exposure through photo mask

Precise alignment fiducials for the laser

Spray development

•Firing 850 °C

die alignment

Optical fibre passive alignment Passive alignment to VCSEL laser or receiver diode

Passive alignment of a $62.5/125\mu m$ multimode fibre to a VCSEL laser by the use of punched through hole in the LTCC substrate.

Hole diameter tolerance +/- 2 μm

VCSEL transmitter

Fibre Optic Data Link Modules

ESA ARTES-5 Intra-satellite 10Gbps fibre-optic data transceiver Hermetic fibre pigtailed laser module with

fibre passive alignment

4x 10 Gb/s Optical Coupling Demonstrator

Cavity for microlens array with 'optical vias' and alignment marks

LTCC receiver

'optical vias' and flip-chip pads

Fabrication of 3D LTCC Structures

Mechanical punching is the most common technique for LTCC tape structuring

Punched 80 μ m vias on 160 μ m pitch

- Hundreds of holes per second can be punched using customised matrix tooling
- Punching method gives the best hole quality
- Holes can be punched through several laminated layers also
- Different punch tool geometries are available

Laser Structuring of LTCC tape or laminate

Laser structuring of laminate and tape is fast in the un-fired state

Narrow (<150μm) channels
Complex shapes
Laser cut edge is slightly inclined (beam shape)

CNC machining of LTCC

- Accurate holes can be drilled to very thick laminates (un-fired)
- Wear of the hard-metal drill bit due to abrasive ceramic binder
- Final hole size tolerance (after firing) mainly depends on drill tool tolerances
- Hole placement tolerance depends on drilling accuracy and LTCC firing shrinkage tolerance (typically 0.1-0.2%)

Drilled 2mm holes, metallised

- Accurate holes can be CNC- machined to fired substrates using diamond tooling
- Minimum hole diameter is typically 2.5mm on <50x50mm LTCC part
- Hole diameter can be controlled to +/- $5\mu m$ tolerance
- Hole-to hole distance can be controlled to +/- $15\mu m$ tolerance

Fabrication of surface cavities

Molded silicone inserts support the cavity structure during lamination (removed after lamination)

Typical cavity tolerance is +/- $50\mu m$

Small inserts difficult to handle -> Insert mat can be used for lamination

Fabrication of buried cavities and channels Lamination methods

Method 1: Lamination at very low pressure

- tape layer delamination may happen
- channel width limited to about 0.5 mm
- substrate sagging problems

Method 2: Lamination with sacrificial filler

- sacrificial material supports the structure in lamination and burns off during substrate cofiring process
- possible sacrificial materials:carbon, wax...
- substrate cracking can be a problem

Method 3: Lamination in several steps

- Standard lamination for separate sub-laminates
- Final "cold lamination" step = gluing of parts together with a glue that burns off during cofiring

Fabrication of buried cavities and channels Sacrificial carbon

Carbon insert 0.4 x 0.41 x 2.3 mm

Co-fired cavity

Channels filled with carbon paste

MINIGAS-Project

LTCC Platform for Miniature photo-acoustic gas sensor

Realised LTCC platform Channel 2 x 2 x 8mm

Implant for Continuous Blood Sugar Monitoring (Lifecare AS)

LTCC IMPLANT:

- Packaging of glucose measurement system
- microchannels for reference chamber filling and sealing
- Measurement electronics
- Inductive link for power supply and data transmission

MAC_TFC - project MEMS Atomic Clocks for Timing, Frequency Control and Communications

- Size and power consumption of existing atomic clocks far exceed those of quartz-based clocks
- GOAL: To develop an ultra-miniaturized and low-power cesium atomic clock in LTCC package presenting:
 - Small size
 - a short-term stability of 5*10⁻¹¹ over 1 hour (Thermal stability important)
 - less than 200 mW power consumption

Atomic clock package concept

