Foundries, MMICs, systems Rüdiger Follmann

Content

- \rightarrow MMIC foundries
- \rightarrow Designs and trends
- \rightarrow Examples

3

MOSIS

Circuits Multi-Projets / Multi-Project Circuits

GaAs in principal

- \rightarrow 3,4 and 6 inch production
- → Target markets: High power and linearity, low noise, broad band
- → Specials available (e.g. E/D mode or HBT and pHEMT on same wafer)
- \rightarrow Frequencies up to 100 GHz
- → Radiation hard

GaAs foundries → OMMIC, France

Foundries and MMICs Feb-09 © IMST GmbH - All rights reserved

5

GaAs foundries

\rightarrow UMS, France (+ USA)

6

GaN

- \rightarrow 4 inch to 6 inch wafers
- → Several foundries (TriQuint, UMS, Cree, Sandia and others)
- \rightarrow Very high power possible
- \rightarrow Defense market, radar, telecommunication
- → Single transistor devices available, very first MMICs launched (IMS 2008, Cree)
- \rightarrow "Reliability" problems
- \rightarrow Frequencies up to 20 GHz and higher (100 GHz)

State-of-the-art

\rightarrow HRL examples

GaN HFET MMIC Power Amplifiers

		GaN POWER	AMPLIFIERS			
Part Number	Function	Frequency (GHz)	Gain (dB)	P1dB (dBm)	Psat (dBm)	Application Note
PA3C-76	High Power Amplifier	71-76	15	24	26	X
PA3C-86	High Power Amplifier	81-86	13	24	26	X
PA3C-96	High Power Amplifier	91-96	12	23.5	25.5	X

http://www.hrl.com/media/gan/gan.html

http://kiss.caltech.edu/mmic2008/presentations/micovic.pdf

Si(Ge)

- \rightarrow 8 inch production
- → Combination of CMOS logic, ECL and BiCMOS
- \rightarrow Frequencies up to 100 GHz
- → Complete transceiver chips possible (e.g. 60 GHz)
- \rightarrow Well known foundries e.g. IBM (8HP)
- \rightarrow Si LDMOS for high power

SiGe → IBM roadmap

M

Trade-offs → Noise figure

Noise Figure Comparison of SiGe, Si & GaAs Technologies

Trade-offs

\rightarrow 1/f noise

Low Frequency Phase Noise of SiGe, Si & GaAs Technologies

́М S

Trade-offs

\rightarrow Costs

Item	GaAs		S	Units	
	FET	HBT	HBT	BiCMOS	
Feature Size	0.5	2.0	0.5	0.5	μm
Starting Material	200	600	200	200	\$
Mask steps	12	14	28	32	
Photo cost	1200	1400	2800	3200	\$
Raw cost	1400	2000	3000	3400	\$
Wafer Diameter	100	100	200	200	mm
Yield	80	70	95	95	%
Cost/mm ²	0.22	0.36	0.10	0.11	mm^2

lechnology Pric	ce/Watt	Power Density	Supply Voltage	Linearity	Frequency	PAE
Si BJT La	ow Cost	Medium	26 V	Poor	<2 GHz	Low
SiGe BJT La	ow Cost	Medium	<20 V	Good	>2 GHz	High
Si LDMOS La	ow Cost	Low	26 V	Very Good	<3 GHz	Medium
GaAs MESFET Con	npetitive	Medium	12 V	Good	>2 GHz	Medium
GaAs pHEMT M	Iedium	Medium	8 V to 12 V	Very Good	>2 GHz	High
GaAs HBT Con	npetitive	High	8 V to 26 V	Good	>2 GHz	High
SiC MESFET Con	npetitive	Very High	48 V	Good	>4 GHz	Medium
GaN HEMT	N/A	Very High	48 V	Promising	>12 GHz	High

I M S

GaN devices → Non-linear model and measurement

M

GaN devices

\rightarrow Model verification

M

GaN mmwave power

HRL W-band GaN Roadmap

GaN mmwave PA

500 mW 70 GHz GaN MMIC PA

70 GHz MMIC Chip Layout Size 3.4 mm x 1.3 mm

Operating Voltage = 15 V

Measured Gain > 15 dB

Measured small signal gain of 70 GHz 500 mW GaN MMIC PA.

Performance meets design goal.

© 2008 HRL Laboratories, LLC. All Rights Reserved

GaN mmwave PA

Integrated coplanar 24 GHz sensor

World's 1st 24 GHz coplanar sensor designed at IMST

DaimlerChryslerAerospace

Many pieces – one solution M5-Service.

Microwave / MilliMeterwave Module Engineering and Manufacturing.

Rosemount 24 GHz level sensor

Foundries and MMICs Feb-09 © IMST GmbH - All rights reserved

21

Integrated GaAs circuits – 24 GHz sensor

GaAs circuits – 10 GHz LNA

23

Core Chip Design : 2NLNA4PS2

Specifications:

- → Ku-band core chip including the 2-stage LNA and the 4-bit phase shifter
- → Technology: OMMIC ED02AH
- → LNA bias supply: $V_{G1,2}$ = -0.2 V, $V_{D1,2}$ = 2.0 V, I_{D1} = 28.2 mA, I_{D2} = 29.0 mA
- → PS control voltages: $V_c = 0 V / -2 V$
- → f = 10.7 ... 12.7 GHz
- → $S_{11} \leq -13.3$ dB (all states)
- → $S_{22} \leq -11.6$ dB (all states)
- → $S_{21} = 13.2 \dots 14.4 \text{ dB}$ (all states)
- \rightarrow RMS amplitude error = 0.4 dB
- \rightarrow RMS phase error = 2.6 °
- → $A = 2.17 \times 2.05 \text{ mm}^2 = 4.45 \text{ mm}^2$
 - $\Rightarrow\,$ including half dicing street
 - \Rightarrow including DC pads (#8) for the PS control (not necessary if using the DC control circuit)
 - \Rightarrow excluding DC control circuit (serial to parallel converter + buffers)
- 24 Foundries and MMICs Feb-09 © IMST GmbH All rights reserved

Core Chip Design : 2NLNA4PS2

Layout:

Momentum simulation

\rightarrow Higher integration possible

Size reduction

Including logic

I M S

System example synthesizer

→ small and integrated chip

- \rightarrow Large size (LO)
- → Heavy
- → Single frequency

http://www.saabgroup.com/en/ProductsServices/BusinessUnit/saab_ericsson_space.htm http://products.saabgroup.com/PDBWebNew/GetFile.aspx?PathType=ProductFiles&FileType=Files&Id=6071

Phase noise

Simplified Leeson equation

$$L(f_m) = \frac{FkTG}{8Q_LP} \left(\frac{f_r}{f_m}\right)^2$$

$$\left|S_{21}\right| = \frac{1}{G} = 1 - \frac{Q_L}{Q_0}$$

G: Gain of active part

f_r:

- F: Noise figure of active part
- Q_L: Loaded Q of resonator
 - Resonance frequency
- f_m: Offset frequency from carrier
- P: Output power of active part
- S₂₁: Transmission coefficient of resonator at resonance

VCO requirement

- \rightarrow High quality factor of the resonator
- →Large voltage swing (high output power)
- →High breakdown voltage for active part transistor technology
- \rightarrow Use a transistor with low 1/f noise

́М S

PLLs

- →Close to the carrier phase noise is determined by the reference crystal
- →Inside PLL loop the phase noise of a synthesizer is determined by the PLL (phase detector). VCO noise is attenuated.
- →Output PLL loop the phase noise of a synthesizer is determined by the VCO phase noise

Integer-N PLL with reference divider

How to generate arbitrary frequencies?

→ Build a programmable 1/N-divider

Continuos division (example x=8)

 \rightarrow Divide S times by x+1 and P-S times by x

N=(x+1)*S+x*(P-S)=8*P+S, P>S

P=6,S=0..6: N=8*6+0..8*6+7=48..54, 55 not possible

P=7,S=0..7: N=8*7+0..8*7+7=56..63 P=8,S=0..7: N=8*8+0..8*8+7=64..71

Simplified fractional-N PLL example

Ratio: 10.1: Divide 9 times by 10 and one time by 11 (next page)

Accumulator

This division schema generates large spurs.

Sigma Delta Modulator (SDM)

Modulator input: Only fractional part x_f SDM generates series of integer numbers n_i $n_i \in M$, 2^{μ} values are available for M

$$x_f = \overline{n}_i = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^N n_i$$

Time average value at SDM output

Example: 2, -4, -2, 3, 0, 3 - 1, -3, 2, 1, ... for $x_f = 0.1$

Synthesizer architecture (1)

Synthesizer architecture (2)

Synthesizer architecture (3)

SiGe Design

- \rightarrow World best 1-chip synthesizer
- \rightarrow 250 MHz-24 GHz PLL
- → Integrated 17...20 GHz or 8...12 GHz VCO
- \rightarrow Fractional-N

Measurement results

Foundries and MMICs Feb-09 © IMST GmbH - All rights reserved

44

Synthesizer application test board

→PC interface

→Many test ports

Packages

 \rightarrow BGA simulation

 \rightarrow Equivalent circuits

→ Magnetic field

World smallest phase shifter (ka)

Size 960 x 360 μm^2 , Core 620 x 210 μm^2

 $V_D = 3 V$, $V_{C (B0-B4)} = 0 V / 3 V$ (active / not active)

Phase diagram

I M S

Any questions?

I M S