PRIFYSGO

RF IV Waveform Measurement and Engineering - Role in Transistor Characterization and Amplifier Design -

Centre for High Frequency Engineering

School of Engineering Cardiff University

Contact information

Prof. Paul J Tasker tasker@cf.ac.uk website: www.engin.cf.ac.uk/chfe

IEEE IEEE MTT-S Distinguished **Microwave Lecturer** 2008-2010

- powerful dynamic transistor characterization tool

- Basic Concept
 - Use RF Waveform Measurement and Engineering Systems to investigated both the transistors dynamic I-V (Current-Voltage) plane and its Q-V (Charge-Voltage) plane
 - Both qualitative and quantitative
 - Alternatives: DC I-V, Pulsed I-V, bias dependent s-parameters
- Applications
 - Technology Evaluation
 - Observe and quantify its dynamic large signal response
 - Technology Optimization
 - Link technology design to system performance
 - Technology Modelling
 - support the development of CAD tools
 - Circuit Design Tool
 - Support the development of Power Amplifiers

- powerful dynamic transistor characterization tool

- Transistor Characterization: Case Study
 - Use RF Waveform Measurement and Engineering Systems to investigated general performance of Transistor Technology
 - Current Limits, Modes of Operation, RF Cooling

- Detailed Insight into Dynamic Behaviour Limitations
 - Measure Input voltage and current waveforms
 - function of input drive level

- Detailed Insight into Dynamic Behaviour
 - Gate Diode: Forward Diode
 Conduction and Reverse
 Breakdown
 - Gate Capacitance
- Relevant information for both
 - Device Engineer
 - PA Circuit Designer

AlGaAs/InGaAs HFET @ 4 GHz

- Detailed Insight into Dynamic Behaviour Limitations

• Measure Output voltage and current waveforms

- function of input drive level
- Detailed Insight into Dynamic Behaviour
 - Drain Current Saturation: Knee Region and Breakdown
 - Gate-Drain Trans-capacitance
- Relevant information for both
 - Device Engineer
 - PA Circuit Designer

AlGaAs/InGaAs HFET @ 4 GHz

- Detailed Insight into Dynamic Behaviour Limitations

@ 4.0 GHz

Dynamic Transfer Characteristic Measurements

- Device Response
 - Waveform Shapes
 - Insight provided by eliminating time axes
 - Effects of dynamic transfer characterisation clearly observed
 - DC/RF Dispersion
 - Effects of Delay/Trans-capacitance clearly observed

• I-Q Extraction

- Detailed Insight into Dynamic Behaviour Limitations

Dynamic Breakdown in Low Noise AlGaAs/InGaAs HFET's

- Device Response
 - Waveform Shapes
 - Insight provided by eliminating time axes
 - Effects of dynamic gate-drain breakdown clearly observed

- Detailed Insight into Dynamic Behaviour Limitations

Device Response

- Waveform Shapes
- Insight provided by eliminating time axes
 - Effects of dynamic RF cooling clearly observed
- Linked with pulsed RF I-V technique

RF Cooling in Handset PA AlGaAs/InGaAs HBT's

Measured RF I-V Waveforms

– Unifying Analysis Tool

Measured RF I-V Waveforms

– General purpose Analysis Tool

Output Power versus Input Power and Base Bias Voltage

2nd Harmonic Output Power versus Input Power and Base Bias Voltage

Experimental Emulate the affect of varying external parameters: In this case input drive level and input DC bias voltage

Note, have all information on magnitude and phase of all voltage and current Fourier components

Efficiency versus Input Power and Base Bias Voltage

3rd Harmonic Output Power versus Input Power and Base Bias Voltage

GaAs HBT Performance as a function of Load Impedance

- powerful dynamic transistor characterization tool

- Transistor Characterization: Case Study
 - Use RF Waveform Measurement and Engineering Systems to investigated factor limiting the observed power performance of the emerging GaN Transistor Technology
 - Current Collapse, Knee Walkout, Poor Pinch-off

- visualizing the DC-RF Dispersion Problem

Commonly observed that the RF Power Performance of the GaN transistor was less than predicted (DC I-V & s-parameters)

Approach: Drive the GaN transitor in to compression while measuring RF Output V & I Waveforms (840MHz)

Waveforms show compression at RF Boundaries differs from the DC Boundaries, hence clearly identifying source of the problem: knee walkout or current collapse

- visualizing the DC-RF Dispersion Problem
- Measured drain current with fundamental load-pull only
 - Complex load-lines are more difficult to interpret: cause concern in extracting boundaries

- Measured drain current with 3-harmonic load-pull
 - Simple load-lines are easy to interpret: no ambiguity in extracting boundaries

• For quantitative results make full use of waveform engineering, however, fundamental alone does provide for qualitative insight.

- visualizing the DC-RF Dispersion Problem
- Investigate factors that influence the knee walkout or current collapse problem: Quiescent Drain Bias Voltage

The Dynamic RF knee boundary shifts as DC drain bias increases

(10, 15 and 20V)

This limits achievable power densities

Still unclear whether should relate problem to knee walkout or current collapse

RF "Fan Diagram": GaN HFET Application

- evaluation of trapping ("knee walkout") problem

RF "Fan Diagram": GaN HFET Application

- evaluation of trapping ("knee walkout") problem

- Class A RF I-V Waveforms versus Pulsed I-V

- Comparison with pulsed I-V Measurements
 - Determine boundaries by simultaneously pulsing both gate and drain voltage (DIVA System) from quiescent Class A bias point
- 200 RF Dynamic Load Lines Output Current b [mA] 150 DC Quiescent Bias Point 100 Clearly observe both predict very similar "RF knee-50 walkout" as V_{D} increases 0 10 20 30 40 50 60 0 Output Voltage V_D [V] 160 l₀[mA] Compressed current waveforms confirm that 120 80 the device is in compression **4**0 200 30 40 0 100 500 600 700 17

- Class B RF I-V Waveforms versus Pulsed I-V

- Comparison with pulsed I-V Measurements
 - Problem in this case is that the quiescent bias point is not on the DC I-V plane: Where do we pulse from?
- Same voltage V_G bias point

 "RF knee-walkout" is sensitive to mode of operation

- powerful dynamic transistor characterization tool

- Transistor Characterization: Technology Evaluation and Optimization
 - Poor Pinch-off very similar to knee walkout investigations
 - Reliability and device stress: emerging area.

RF "Fan Diagram": GaN HFET Application

- evaluation of buffer layer design ("soft pinch-off")

- Evaluate Different Buffer Layer Design (Level of Fe Doping)
 - Elimination of soft pinch-off
 - No significant effect at the Knee Region

Transistor RF I-V Waveforms: GaN HFET Application

- Detailed Insight into Dynamic stress/reliability Limitations

- RF waveforms were periodically sampled 100 times during the 1.5hour RF stress period
- 1.8GHz Large-signal CW (\approx 3dB of gain compression), V_D = 20V, Class A, Zf₀ \approx P_{OUT}

- Dynamic Input Characteristics
 - Highlights the displacement current through C_{GS}
 - A small increase in leakage can be seen at the breakdown end

Transistor RF I-V Waveforms: GaN HFET Application

- Detailed Insight into Dynamic stress/reliability Limitations

- No change around $V_T \approx -6V$

- powerful "real time" design tool

- Basic Concept
 - Use RF Waveform Measurement and Engineering Systems to investigated and achieve the required circuit/system performance.
 - Key: Performance is theoretically defined in terms of the voltage and/or current waveforms
 - Alternatives: build and test, CAD tools (requires non-linear model)
- Relevant Circuit Design Problem
 - Those that involve strongly non-linear ('large signal") device operation, not weakly non-linear or linear operation
 - Power Amplifier Design beyond Class A/AB
 - Switching Amplifiers
 - Frequency Multipliers/Dividers

Review PA Design Situation

- too reliant on Build & Test

Review PA Design Situation

- incorporate Basic Principles: "Waveform Engineering"

RF I-V Waveform Engineering

- insight provided by having measured waveforms

HBT biased to operate in class B, low quiescent current

- Current waveform is half rectified
- Voltage waveform is not sinusoidal

Engineer harmonic impedances: Short second/third harmonic

- Current waveform is half rectified
- Voltage waveform is now sinusoidal

Design Example: Class B Amplifier Emulation/Measurement

RF I-V Waveform Engineering

- insight provided by having measured waveforms

HBT biased to operate in class B, low quiescent current

- Current waveform is half rectified
- Voltage waveform is not sinusoidal

Engineer harmonic impedances: Short/open second/third harmonic

- Current waveform is half rectified
- Voltage waveform is now a square wave

Design Example: Class F Amplifier Emulation/Measurement

- "on-line" direct utilization in amplifier design cycle

- powerful dynamic transistor amplifier design tool

- Transistor Amplifier Design: Case Study
 - Use RF Waveform Measurement and Engineering Systems to investigated how to realize in practice the theoretically predicted high efficiency modes of operation
 - Class B, Class F or their variants

- requires engineer of voltage and current waveforms

Simple Theoretical Understanding

Advanced Theoretical Understanding

- Designed in an intelligent manner a class F efficient RF Power Amplifier
 - Maximized Output Power
 - Realized 75% PAE
- Ready for realization

- review of theoretical understanding: Class F

Ideal Class F occurs if the current and voltage waveforms are simultaneously engineered such that:

The voltage waveform contains f₀ and correct proportions of the odd harmonics

If this is achieved there is no overlap between the waveforms, resulting in no dissipated power and 100% efficiency.

- review of practical constraints: System and Circuit Bandwidth

- The achievable efficiency in a real design is constrained by our ability to correctly engineer the ideal waveforms.
 - Circuit Bandwidth
 - In real PA designs harmonic control is commonly limited to 2f₀ and 3f₀ due to the complexity of matching circuits.
 - Following the analysis of Rhodes,* for a Class F design with harmonics only up to 3f₀ ideally terminated, the maximum achievable efficiency is limited to an upper limit of 90.6% assuming your matching network is lossless!

We can quantify the ability to engineer ideal waveforms by two factors $\eta_{current}$ and $\eta_{voltage}$ using the DC and fundamental RF components:

$$\eta_{\text{current}} = i_{\text{RF}} / (\sqrt{2} \times I_{\text{DC}}) \quad \eta_{\text{voltage}} = v_{RF} / (\sqrt{2} \times V_{DC})$$

* J.D. Rhodes "Output universality in maximum efficiency linear power amplifiers" International Journal of Circuit Theory and Applications, volume 31, 2003, pp.385-405

- review of practical constraints: System and Circuit Bandwidth

Class	η _{current}	$\eta_{voltage}$	$\eta = \eta_{\text{current}} \times \eta_{\text{voltage}} \times 100 [\%]$
Α	0.707	0.707	50
В	1.111	0.707	78.5
F (Ideal)	1.111	0.900	100
F (3f ₀)	1.111	0.816	90.6

- review of practical constraints: Transistor Limitations

 A further limitation on achievable efficiency in practical designs arises from features of real transistor characteristics which make a fraction of the dc dissipated power unavailable for conversion to RF power:

We can quantify the ability to engineer ideal waveforms by two factors $\eta_{current}$ and $\eta_{voltage}$ using the DC and fundamental RF components:

 $\eta_{\text{current}} = \dot{\mathbf{n}}_{\text{RF}} / (\sqrt{2} \times \mathbf{I}_{\text{DC}}) \quad \eta_{\text{voltage}} = v_{RF} / (\sqrt{2} \times V_{DC})$

- review of practical constraints: Impedance Scaling

• Starting with Class B bias for a half rectified current waveform, what is the effect of tuning the second harmonic to a short?

Eliminated 2nd harmonic from voltage waveform

- review of practical constraints: Impedance Scaling

- Good short circuits harder to achieve relative to a Small R_{opt}
- Makes high efficiency harder to achieve in large devices
- Possible solution include numerous short circuits integrated onto the die to allow subsets of transistor cells to be given a better short...
- Packaging parasitics can form a filter blocking higher harmonics...

Harmonic Termination Ratio: Z @ $2f_0$ normalised by Z @ f_0

- review of practical constraints: Transistor Transfer Characteristic

- Need to select a suitable drive level for harmonic generation (approaching P1dB)
- Ideally we need to ensure we have separated the harmonics:
 - only odds in the voltage waveform
 - only evens in the current waveform

...but will the practical device allow this!

Engineering The Current Waveform

- Gate bias control to null the odd harmonics

- In class F optimum performance will only occur if the most significant odd harmonics (usually only consider 3f₀) are not present in the current waveform.
- Using Fourier analysis of the measured current waveforms we can locate this optimal case...

- Practical constraints:
 - Other harmonics are not zero
 - Optimum bias is a function of voltage waveform "shape" and RF drive level

Engineering The Voltage Waveform

- Open tuned 3rd harmonic gate bias sweep
- Engineering the voltage waveform to a square wave involves tuning the 3rd harmonic to an open and increasing the fundamental load to maintain the same current swing.
 - Note, the optimum Class F behaviour will only occur if the current at 3f₀ remains null.

- Since Class F requires an open termination at 3f₀, it is impossible to verify this condition has been met by direct measurement of the 3f₀ harmonic current.
 - Consider v_{3rd}/v_{fund} ratio. Theory predicts 1/6 (=0.167)

Engineering The Voltage Waveform

- Why was extra third harmonic developed?
- Plotting the dynamic load-line for the final design shows the interaction of the waveforms with the knee region.
- Ideal square wave requires all harmonics – we only control the first 3
- Optimal 3 harmonic only voltage waveform has a v_{3rd}/v_{fund} ratio of 1/6 if the boundary conditions are ideal (vertical)
- However due to the finite on-resistance of the real knee boundary the optimal ratio is higher, at almost 1/4

- The final experimentally engineered "class F" waveforms achieved a drain efficiency value of 75%,
- This is extremely high given the boundary conditions and drain bias of the real device used.

- "on-line" direct utilization in amplifier design cycle

Simple Theoretical Understanding: Provides If not How and Why

Advanced Theoretical Understanding: Must provide How and Why

developing theoretically based but practically relevant waveform engineering design methodologies 41

Apply Waveform Design Methodology - 5W Si LDMOS into Class F Emulation/Design

Engineered and Measured Intrinsic Waveforms: Design Aid

High Power Class F Design

5W Si LDMOS @ 900 MHz

- Class F clearly achieved
- High Power 36.0 dBm (4W)
- High Efficiency 77.2%

5W Si LDMOS @ 2100 MHz

- Class F clearly achieved
- High Power 35.9 dBm (4W)
- High Efficiency 77.1%

Apply Waveform Design Methodology

- 10W GaN HFET & 5W Si LDMOS into Inverse Class F

Engineered and Measured Intrinsic Waveforms: Design Aid

5W Si LDMOS @ 900 MHz

- Inverse Class F clearly achieved
- High Power 37.3 dBm (5.4W)
- High Efficiency 73%

- Inverse Class F clearly achieved
- High Power 40.8 dBm (12W)
- High Efficiency 81.5%

12W Inverse class-F Amplifier Realisation

- right first time design using CREE 10W device

- *'Right first time'* waveform based design through the realisation of a high-performance inverse class-F PA
- Impressive efficiency of 81% at high output powers
- High Power achieving 12W form a 10W device

- powerful dynamic transistor amplifier design tool

- Investigation of "New Design Space"
 - Use RF Waveform Measurement and Engineering Systems to stimulate new theoretically investigations in alternative high efficiency modes of operation
 - Move beyond the discrete design point thinking to design continuum thinking
 - The Class B to Class J Continuum
 - New Theory
 - Improved Bandwidth

- provides for new theoretical insight

- Consider the Class B and Class J Mode of operation
 - Both have a half rectified current waveform
 - Both have the same theoretical power and efficiency values
 - But have very different voltages waveforms
 - Different fundamental and 2nd harmonic reactance's

- Rhodes^{*} provide some mathematical insight
 - Optimum fundamental reactance is mathematical defined by harmonic reactive terminations

* J.D. Rhodes "Output universality in maximum efficiency linear power amplifiers" International Journal of Circuit Theory and Applications, volume 31, 2003, pp.385-405

- provides for new theoretical insight
- They are just different solutions of the same mode?
 - The Class J Class B Class J* Continuum
 - $v(\theta) = (1 \beta \cos \theta)(1 \alpha \sin \theta), \quad (-1 \le \alpha \le 1)$
 - Many more possible solutions

47

- experimental validation of new theoretical insight

- Class J-B-J* Continuum Sensitivity Analysis

On Cree 2W on-wafer device:

- R_1 held to R_{opt} , R_2 held to 1.5Ω
- X₁ and X₂ were swept to examine the impact of the deviation off the Class-JB continuum contour

Results

- Class-JB continuum visually identifiable with a high efficiency contour
- Roll-off of efficiency is greater for a deviation in fundamental load compared to second harmonic

Increased design flexibility

Realising Class-J Matching

- Compromises need to be made/considered across this size of bandwidth.
- Fundamental load impedance matching given priority.
- Second harmonic already close to optimum class-J reactance at centre frequency of desired bandwidth as a result of output capacitance C_{ds}

 \rightarrow Z_{2f0} allowed more latitude during the design.

- Shunt shorted-stub increases the effective capacitive reactance of second harmonic load at lower frequencies.

Performance of PA Prototype (1st it.)

- The PA shows a measured 60%-and-above drain efficiency across the frequency range 1.35-2.25GHz.
- Drain efficiency measured for PA, model simulation and load-pull emulation.
- Closely agreeing results with the load-pull emulation.
- Output power across this same bandwidth is 9-11Watts (device-rated power).

Proposed bandwidth not met entirely, but still a 50% bandwidth PA achieved.

Performance of PA Prototype (2nd it.)

 Second design iteration extending high-efficiency operation across the originally intended PA bandwidth of 1.5-2.5GHz

● Input matched PA → Resulting gain and PAE profiles

– a powerful tool and concept

Waveform are the unifying link between device technology, circuit design and system performance