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Outline

Introduction: Behavioral Models and NVNA

F ti l Bl k M d lFunctional Block Models
• Nonlinear Time Series
• X parameters (PHD Model) in the Frequency Domain• X-parameters (PHD Model) in the Frequency Domain
• Mixed Time-Frequency Methods

Summary and Conclusionsy
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Introduction: Behavioral Modeling and Design Hierarchy

S tSystem

Circuit
( )( ) :     ( , , ..., , ..., )ny t i f v v i i=

( )v t
( )v t
( )i t { Multivariate functions 

for i1, i2

Embedding 
Variables

( )i t {
{
{

1 2

Behavioral Model:
Accurate model of 

lower level component

Equivalent Circuit Model
“Compact Model”

Device

for simulation at next
highest level

Compact Model
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Measurement-Based and Simulation-Based Models
Actual Circuit Measurement-Based ModelMeasurement-Based Model

• Ckt. model may not exist
• Ckt. models may be inaccurate
• Completely protect design IP

Design of Module or Instrument Front End
Completely protect design IP

Generate
B h i l

Amplifier or Mixer IC
DC-20 GHz HBT Agilent  HMMC 5200 amp [2]

Behavioral
Model

Simulation-Based Model
• Simulation speedup

Detailed Circuit Model 
(SPICE/ADS) f IC

• Simulation speedup
• Design system before building/buying IC
• Completely protect design IP

Simple for Linear Ckts: S parameters
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S-parameters as simplest behavioral model 

Easy to measure at high frequencies
measure voltage traveling waves with a (linear) vector network analyzer (VNA)
don't need shorts/opens which can cause devices to oscillate or self-destruct/ p

Relate to familiar measurements (gain, loss, reflection coefficient ...)
Can cascade S-parameters of multiple devices to predict system performance
Can import and use S-parameter files in electronic-simulation tools (e.g. ADS)p p ( g )
BUT: No harmonics, No distortion, No nonlinearities, …
Invalid for nonlinear devices excited by large signals, despite ad hoc attempts

M d l

Incident TransmittedS 21
a 1S parameters

Linear Simulation:
Matrix Multiplication

Measure with linear VNA:
Small amplitude sinusoids

Model 
Parameters:
Simple algebra

S 11
Reflected S 22

Reflectedb 1

a 1
b 2

DUT

Port 1 Port 2

S-parameters
b1 = S11a1 + S12a2

b2 = S21a1 + S22a2
0k

i
ij

aj
k j

bS
a =

≠

=
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Three Components of Behavioral Modeling

1. Model Formulation
Nonlinear ODEs in Time Domain (e g Transient Analysis; all others)– Nonlinear ODEs in Time Domain (e.g. Transient Analysis; all others)

– NL Spectral Map in Freq. Domain (e.g. Harmonic Balance) X-params
– Mixed Domains (e.g. ODE-Coupled Envelopes in Circuit Env. Analysis)

2. Experiment Design
– Stimulus needed to excite relevant dynamics

3 Model Identification3. Model Identification
– Procedure to determine model “parameters”
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Model Formulation: Time & Freq. Domains [1,6]

( ) ( ( ), ( ), ( ), ..., ( ), ...)I t F V t V t V t I t=( ) ( ( ), ( ), ( ), ..., ( ), ...)I t F V t V t V t I t
Natural for strongly nonlinear low-order (lumped) systems

,...),,( 321 AAAFB kk =

Freq. Domain natural for low-distortion, high-freq. ICs
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Wanted: Cascadability of Nonlinear Components

21 P
ou

t

1 11 222

P di t i l d h i ( it d d h ) th h h i f

Sin(2πf0t)

Freq

1

f0

1

3f0

1

2f0

222

Predict signal and harmonics (magnitude and phase) through chains of 
cascaded nonlinear components under drive

• Inter-stage mismatch is important to final results
– Can not infer these effects from VNA measurements (even “Hot S22”)

• Required for communication circuits and module design
• Linear S-parameter theory doesn’t apply!Linear S parameter theory doesn t apply!

Most previous attempts to generalize S-parameters to nonlinear case are wrong!
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Wanted: Hierarchical Modeling 
Model the cascade directly

Dev 1 Dev 2

Dev 1 Dev 2

Model the cascade directly

Mod 1 Mod 2

Mod 1 Mod 2

Composite
Model

(Higher Level)

A cascade of many models reduced to one

Mod 1 Mod 2
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Experiment Design: Simulation

Detailed Circuit 
Model Goes here
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Experiment Design: Measurement

Nonlinear Vector Network Analyzer [9,14] (NVNA)

Magnitude and Phase Data Acquisition

RFIC

A1k B1l B AA1k B1l B2m A2nReference
planes

Calibrated magnitude & phase of harmonics/IMD 

M d li ti l i l ditiMeasures under realistic large-signal conditions

Based on Standard Agilent PNA Hardware
And custom reference generatorNew phase calibration standard
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Introduction: NVNA measurements  
complex spectra and waveformscomplex spectra and waveforms

2 kA1kA

B 2kB

pkBpkA
1kB 2k

Port Index
Harmonic  Index

I 2I1I 2I
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Nonlinear Vector Network Analyzer (NVNA) [14]:

Network Analyzer Phase Reference Meas. Science 
Algorithms & Software

+ + = NVNA

NVNA = PNA-X + Phase Reference (custom InP IC)
+ A li ti SW d lib ti ( d h )+ Application SW and calibration (mag and phase)

two internal sources, internal switches, and an internal broadband combiner
NVNA measures Magnitude and Phase of all relevant frequency components 
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Nonlinear Vector Network Analyzer (NVNA) [14]

Vector (amplitude/phase) corrected nonlinear 
measurements from 10 MHz to 50 GHz

Calibrated absolute amplitude and relative phase (cross-p p (
frequency relative phase) of measured spectra traceable to 
standards lab

50 GHz of vector corrected bandwidth for time domain 
waveforms of voltages and currents of DUTg

Multi-Envelope domain measurements for measurement 
and analysis of memory effects

X-parameters: Extension of Scattering parameters into the 
li i idi i i i ht i t linonlinear region providing unique insight into nonlinear 

DUT behavior. Efficient measurements with phase control.
External instrument control, pulsed, triggered 
measurements

X t MDIF fil d b ADS X P tX-parameter MDIF file read by ADS XnP component or 
nonlinear simulation and design. 

X-parameter  generation from detailed schematics within 
ADS simulator.
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Standard VNA  HW with Nonlinear features & capability



Outline

Introduction: Behavioral Models and NVNA

F ti l Bl k M d lFunctional Block Models
• Nonlinear Time Series
• X parameters (PHD model) in the Frequency Domain• X-parameters (PHD model) in the Frequency Domain
• Mixed Time-Frequency

Summary and Conclusionsy
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Nonlinear Time Series method of Behavioral Modeling [1,6]
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Dynamical Systems & State Space

The dynamics of the nonlinear system can be assumed to be 
described by a system of nonlinear ODEs

( ) ( 1) ( )( ) ( ,... , , ,... )n n my t f y y x x x−=

O d  f ti  d i ti

( )( ) ( ), ( )u t f u t x t= Vector of State Equations

Order of time derivative

( )
( )

( ) ( ) (

( ) ( ), (

)

)

f

y t h u t x t= Scalar output y(t)

The sampled solution of the ODE, y(t), is a time-series

The solution of the dynamical equations for state variables, 
(t) i ti t i d t j t i Ph S

IEEE DML Norway talk #1    David E. Root 

May 7, 2010 Page 19

u(t), is a time-parameterized trajectory in Phase Space



Phase Space and Time Series

The multi dimensional space

Lorenz system

The multi-dimensional space 
spanned by the state variables 
is known as 
phase spacephase space

Any measurable output is a 
projection of this trajectory 
versus time:
a Time SeriesTime Series
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Nonlinear Time Series (NLTS) 
Phase Space Reconstruction by Embeddingy g

Output y(t)I t (t)

NLTS Behavioral Modeling is “inverse” of solving known ODEs
Start from input & output time series and discover dynamics

Output y(t)Input x(t)
Unknown Nonlinear 

Component

Stimulate System with drive x(t)

Record Time Series output y(t)

timetime

y

Embed drive x(t) & response y(t)

Stop when trajectory single valued

This results in the Nonlinear ODE:

x
( )y t y

( ( ), ( ), ( ),...) 0f y t y t x t =

This results in the Nonlinear ODE:

Approximate f with smooth function
y

x
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Excitation Designs
Goal: stimulate all relevant (observable) dynamics

Sweep Power and Frequency to “cover phase space”

Goal: stimulate all relevant (observable) dynamics

‘Two-tone’

f1 f +Δf

‘Three-tone’

Used for 
modelsf1 f1+Δf

f1 f1+Δf
f1+Δf

models

‘Modulation’ (CDMA)

f1
f1+Δf

f2

‘Multi-tone’ or ‘Multi-sine’

f1+Δf?
f1+Δf

fn
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Embedding: Building up phase space to define ODE

i(t)
B

i(t)i(t)
B

i(t)i(t)
BB

BB

AA AA

v(t)v(t)v(t) v(t)v(t)

v’(t)v (t)

( ) ( ( ) ( ))i t i v t v t( ) ( ( ))i t i v t≠
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Model Identification: Nonlinear Time Series (NLTS)

X(t) Y(t)
Stimulate / Excite System
Sufficiently complex stimulus

( )

( )

( ) [ ( ), ( ),..., ( )]
( ) [ ( ), ( ),..., ( )]

m

n

x t x t x t x t
y t y t y t y t

→

→

Embed:
Create auxiliary variables
(represent waveform)( ) [ ( ), ( ), , ( )]y y y y ( p )

( ) ( )
1 1 1 1 1 1

( ) ( )

( ) ( ) ... ( ) ( ) ( ) ... ( )
( ) ( ) ( ) ( ) ( ) ( )

m n

m n

x t x t x t y t y t y t
x t x t x t y t y t y t Sample data:

2 2 2 2 2 2

( ) ( )

( ) ( ) ... ( ) ( ) ( ) ... ( )
. . ... . . . ... .

( ) ( ) ... ( ) ( ) ( ) ... ( )m n
p p p p p p

x t x t x t y t y t y t

x t x t x t y t y t y t

at high frequency
(or envelope; 
hard if multiple timescales)( ) ( ) ( ) ( ) ( ) ( )p p p p p py y y

( ) ( 1) ( )( ,... , , ,... )n n my f y y x x x−= Fit:
Nonlinear function f

p )
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Function approximation Artificial Neural Networks

An ANN is a parallel processor made up of simple, interconnected
processing units, called neurons, with weighted connections.

sigmoid
weights biases

x1

...

baxwsvxxF
I

i

K

k
ikkiiK +⎟
⎠

⎞
⎜
⎝

⎛
+=∑ ∑

= =1 1
1 ),...,(

xk

•Universal Approximation Theorem: Fit “any” nonlinear function of any # of variables
•Infinitely differentiable: better for distortion than naïve splines or low-order polynomials.
•Easy to train (fit) using standard third-party tools (MATLAB)
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•Easy to train on scattered data



Function approximation: Artificial Neural Networks
( ) ( 1) ( 2) ( ) ( 1)( ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( ))n n n n n

ANNy t f y t y t y t u t u t u t− − −=

fANN

{ },ki kw a “Dynamic Neural 
Network”

weights biases

…
{ }

{ },ki kw a Obtained 
by Training

… …
Can also define f by
polynomials, 
radial basis functions, 
look p tables etc

( 1) ( 2) ( ) ( 1)

lookup tables etc.
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Model Implementation: ODE in circuit simulator
(after Zhang and Xu in [6])

x
x

x(1)
+

-
y

v2
v1

+

-

( )

( 1) ( )( ,... , , ,... )

n

n m

y
f y y x x x−

=

-

(1) (2)

+ v2v3

+

-
1v y=

x(1) x(2)
-

3 -

+

+ +

vn-1vn -1 2v v=

x(m-1) x(m)
- f vn-1

( )( )m
nnv v

f
− =
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NLTSA modeling flow

• MATLAB Toolbox, plus 
3rd-party software

Define range
 of operationChoose DUT Excitation

Design

3 party software

• ‘NLTSfile’ structure

• ADS/NVNA-MATLAB
interfacesMATLAB Behavioral

ADS
Simulation

NNMS
Measurement

Read data into

NVNA
Measurement

interfaces

• ADS templates for

– simulation

d t di l

Modeling Toolbox

Choose
model

MATLAB

– data display

– model verification
• Model as SDD in ADS

Embedding
Dimension

model
variables

Multivariate
Function App.

Model 
Verification

Create Model
in ADS
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A t l Ci it
Example: GaAs HBT MMIC

Actual Circuit

DC-20 GHz GaAs HBT 
(Agilent HMMC 5200 Amp)

Series-Shunt Amplifier

G i 9 5 dB @ 1 5GHGain:  9.5 dB       @ 1.5GHz
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Detailed ckt model



Fundamental Phase

Results: NLTS Accuracy and Speed [1,6]
NLTS Behavioral model         Circuit model data
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Circuit Co-Simulation vs. NLTSA Model
Results 3GPP WCDMA (lower) ACLRResults 3GPP WCDMA (lower) ACLR

3GHz WCDMA

Model generated from 

294 sec/pt NLTS

Model generated from 
only sinusoidal signals

294 sec/pt NLTS

1532 sec/pt Ckt.

40 neuron model

Courtesy Greg Jue
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Circuit Co-Simulation vs. NLTSA Behavioral Model
Results vs. Measured 3GPP WCDMA (lower) ACLRResults vs. Measured 3GPP WCDMA (lower) ACLR

WCDMA Lower ACLR Comparison:
Circuit Co-Sim vs. NLTSA Model vs. Measured

3GHz simulated

2 4GH  

60

70
-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

2.4GHz meas

30

40

50

60

C
LR

 (d
B

Circuit Co-Sim 5MHz Lower

10

20

30

A
C NLTSA Model 5 MHz Lower

Circuit Co-Sim 10 MHz Lower

NLTSA Model 10 MHz Lower

Measured Data 5 MHz Lower
0

Input Power (dBm)
Measured Data 10 MHz Lower
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Model is also cascadable Model works in TA, HB, Envelope



Outline

Introduction: Behavioral Models and NVNA

F ti l Bl k M d lFunctional Block Models
• Nonlinear Time Series
• X parameters (PHD Model) in the Frequency Domain• X-parameters (PHD Model) in the Frequency Domain
• Mixed Time-Frequency Methods

Summary and Conclusionsy
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X-parameters (PHD model): a nonlinear paradigm
“Is there an analogue with linear S parameters to help withIs there an analogue with linear S-parameters to help with 
the nonlinear problem?” 

Frequency Domain description is natural for high-frequency, distributed systems

Natural for Harmonic Balance Algorithms and NVNA data
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Arbitrarily Nonlinear; Not limited to Volterra Theory



X-Parameters: The Nonlinear Paradigm

X-parameters are the mathematically correct superset of 
S-parameters, applicable to both large-signal and small-signal 
conditions for linear and nonlinear components The math exists!conditions, for linear and nonlinear components. 

We can measure, model, & simulate with X-parameters 
Each part of the puzzle has been created

The math exists!

p p
The pieces now fit together seamlessly
NVNA: Measure X-params X-parameter block

HARM O NIC BALANCE

ADS: Simulate with X-params
H arm onicBalance
H B2

EquationN am e[3]="Z load"
EquationN am e[2]="R Fpower"
EquationN am e[1]="R Ffreq"
U seKrylov=no
O rder[1]=5
Freq[1]=R Ffreq

Interoperable Nonlinear Measurement Modeling & Simulation with X params

“X-parameters have the potential to do for characterization, 
modeling, and design of nonlinear components and systems what 

Interoperable Nonlinear Measurement, Modeling & Simulation with X-params
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g, g p y
linear S-parameters do for linear components & systems”



X-Parameters: Why They are Important:
Predict performance of cascaded NL componentsPredict performance of cascaded NL components

Cascaded Nonlinear Amplifiers: 
X-parameters enable nonlinear simulation from p
measured data in the presence of mismatch

•Unambiguously identifiable from a simple set of measurementsg y p
•Extremely accurate for high-frequency, distributed nonlinear systems
•Fully nonlinear vector quantities (Magnitude and phase of all harmonics)
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•Cascadable (correct behavior in mismatched environment)



X-parameters come from the
Poly-Harmonic Distortion (PHD) Framework [3-6 12]Poly-Harmonic Distortion (PHD) Framework [3-6,12]

2A1A

1B 2B
( )B F D C A A A A1 1 11 12 21 22( , , , ..., , , ...)k kB F D C A A A A=

2 2 11 12 21 22( , , , ..., , , ...)k kB F D C A A A A=
Port Index Harmonic (or carrier) Index

Spectral map of complex large input phasors to large complex output phasors
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Black-Box description holds for transistors, amplifiers, RF systems, etc. 



X-parameters: Simplest Case - driven with single 
large tone at port 1 [1] (derivation in lecture 2)large tone at port 1 [1] (derivation in lecture 2)

, , 11 12 21 22( , , , ..., , , ...)e f e fB F D C A A A A=

∑ ∑

Concept: simplify general nonlinear spectral 
mapping by spectral linearization

, ,

( )
11

( )( )
, 1 1

,,
1

*
1(| |) (( ) )

ef g gh ef hef

S fF f
e f

T f h
gh

g

h
gh

g h h

B X X A AA P A X P AP − + ⋅= +⋅+∑ ∑

f l h d
Mismatch terms: Mismatch terms:

11( )j AP e ϕ=

Perfectly matched response
s c e s:

linear in ghA linear in *
ghA

Not both g and h =1 in sums

Phase terms come from time-invariance:

“Output of delayed input is just the delayed output”

IEEE DML Norway talk #1    David E. Root 

May 7, 2010 Page 38



X-parameter Results: Cascadability of 
Nonlinear BlocksNonlinear Blocks
HMMC 5200 Amp

Sin(2πf0t)
P t

dB

Compression

deg

f0 3f02f0

Pout
AM/PM

2nd Harmonic PhasedBm deg

Cascaded PHD models
Cascaded Ckt. Models

0 6GH 6 0GH

2nd Harmonic Amplitude 2nd Harmonic PhasedBm deg

Does for distortion of

0.6GHz – 6.0GHz

dBm deg
3rd Harmonic Amplitude nonlinear components

what S-parameters do 
for linear components3rd Harmonic Phase
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Improved Asymptotic Behavior

Volterra Theory Constraints Added for 

20

Improved asymptotic behavior at low power
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X-parameters: HMMC 5200 Response to Digital 
Modulation

Circuit Model

Modulation

X-parameters 
generated 
from ckt model

f S
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X-parameter Results: Transportability 
27 Ohm validation measurement-based model 50 Ohm data
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Rough Comparison of Methods and Applicability

X-Parameters

Frequency Domain natural for highly 
linear distributed broad band ckts

NLTSA

Works in TA, HB, Envelope
linear, distributed, broad-band ckts

Experiment Design completely solved

Highly automated Model Identification

Excellent for strongly nonlinear, but 
lumped (low order ODE) systems

T i i l ith i Highly automated Model Identification

Works in HB & Envelope

Very robust for convergence

Training non-algorithmic

Experiment design not fully solved

Not as robust for convergence e y obust o co e ge ce

Always accurate if sampled densely

Complexity increases rapidly for 

Not as robust for convergence

Scales well with complexity

Great gains in simulation speed
multiple tones

Great gains in simulation speed
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Outline

Introduction: Behavioral Models and NVNA

F ti l Bl k M d lFunctional Block Models
• Nonlinear Time Series
• X parameters (PHD Model) in the Frequency Domain• X-parameters (PHD Model) in the Frequency Domain
• Mixed Time-Frequency Methods

Summary and Conclusionsy
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Envelope Domain for Long-Term Memory [7,8]
Applies to systems under large-signal modulated drives

Time-varying spectra for all inputs, outputs, & state variables

Perfectly suited for Circuit Envelope Analysis y p y

Well-matched for data from Nonlinear Vector Network Analyzer
Time Domain (envelope)

B2(t)Time-varying spectrum

1 2 3 4DC

02

0

( ) Re ( )
H

j h f t
h

h

x t X t e π

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑

Xh(t) set of complex (amplitude and phase) waveforms at each harmonic index h
time

Freq. (GHz)
1 2 3 4DC
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Envelope Domain for Long-Term Memory [7,8]

Merge Frequency and Time Domains
Spectral mapping ( ) ( )FB X A A A A=Spectral mapping                                      

a differential equation in the envelope domain

(1) ( ) (1) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ

( )
11 12 21 22( , , ..., , , ...)pk pkB X A A A A=

→

(1) ( ) (1) ( )( ( ),..., ( ), ( ), ( ),..., ( ),..., ( ))n m
k k k k l l k kB f B t B t A t A t A t A t=

Envelope or carrier index
Order of time derivative

Envelope or carrier index

21 21 20 11
ˆˆ ˆ( ) ( ( ), ( ))

ˆ ( )

B t f B t A t

dB

=Example:
2

20
11 21

( ) ˆ ˆ( ( ) , ( ))dB t g A t B t
dt

=
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Envelope Model: Amplifier with Self-Heating [8]
0.4

F d t l I t
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0

Systematic approach to 
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variables for long-term 
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Dynamic Long-Term Memory PHD Models 
Envelope Differential Equations in ADS [7,8,13]

X t ith d i ( d)

Envelope Differential Equations in ADS [7,8,13]
Verspecht et al in 2007 International Microwave Symposium Digest [13]

X-parameters with dynamic memory (red)
compared to  circuit-level model (blue) 
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Conclusions
Powerful nonlinear device & behavioral modeling approaches inPowerful nonlinear device & behavioral modeling approaches in 
time, frequency, and mixed domains have been presented
• X-parameters are mature. Commercial solutions to measure, model, and 

simulate are available supported and expanding (see lecture 2)simulate are available, supported, and expanding (see lecture 2).
• Time-domain (NLTSA) techniques could become practical soon.
• Envelope domain (dynamic X-parameters) is attractive for memory.

Emergence of commercially available Large-Signal HW & SW
• e.g. NVNA on modern PNA-X platform [9,14]
• e.g. nonlinear simulators with built-in XnP components & X-param analysisg p p y

Great opportunity for applications
S ifi ti f ti t b X t• Specification of active components by X-parameters

• Device and behavioral modeling applications of NVNA measurements
• Stability analysis and matching power amplifiers under drive
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• Active Signal Integrity
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