Microcontroller
Programming

Dr. Habib-ur Rehman
College of Engineering
UAE University

Registers Memory

» Basic Registers
» Banks Selection
« Variable Registers definition

PIC16F877/876 Program Memory Map & Stack

I F i1 2 O I

TETLT . EETLIET 1=
FETEIE., P ETILMN ;-""r

Srachk Lew=l 1

=rack Lewersl =2

Sl=ck L= =

FE=ET “YWes—hoar

[(ElElal el
-
™
-
Imnt=rrupEt schar (mlela . NC
i CodadSh
Faog= O
DT EFEFh
ODEQdDh
i Fao= 1
Sl Sl ODF FFh
Frogram '{
Fl=rme=ry 100 D
Faog= =2
1 TFFhEh
1Eanoh
Faog= =2
L. 1 FFFh

PIC16F877/876 Register File Map

Indirect | File
addr Add
ress
PCL 02h
STATUS | 03h
FSR 04h
PCLATH | OAh
INTCON | 0Bh

Indirect File
addr Add
ress
OPTION_ | 81h
REG
PCL 82h
STATUS 83h
FSR 84h
PCLATH 8Ah
INTCON 8Bh

I ndir ect File
addr Addr
ess

TMRO 101h
PCL 102h
STATUS 103h
FSR 104h
PCLATH 10Ah
INTCON 10Bh

I ndirect File
addr Addr
ess

OPTION_R | 181h
EG

PCL 182h
STATUS 183h
FSR 184h
PCLATH 18Ah
INTCON 18Bh

Data Memory Organization

m Bits
and
are t

RP1(STATUS<6>)
RPO(STATUS<6>)

ne Bank Select bits

RP1:RPO Bank
00 0
01 1
10 2
11 3

INSTRUCTION SET

= |ntroduction to Instruction set

% |nstructions examples & Addressing
Modes

OPCODE FIELD DESCRIPTIONS

Field Description

f Register file address (0x00 to 0x7F)

W Working register (accumulator)

b Bit address within an 8-bit file register

k Literal field, constant data or label

X Don't care location (= 0 or 1). The assembler will generate code
with x = 0. It is the recommended form of use for
compatibility with all Microchip software tools.

d Destination select; d = 0: store result in W, d = 1. store result in
file register f. Default is d = 1.

PC Program Counter

TO Time-out bit

PD

Power-down bit

GENERAL FORMAT FOR
INSTRUCTIONS

13

Byte-oriented file register operations

8 7

6

OPCODE

d

f (FILE#)

d=0 for destination W

d=1 for destination file register
f=7-Dbit file register address

13

Bit-oriented file register operations

10 9 /

6

OPCODE

b(BIT#)

f (FILE#)

b=3-bit address

f=7-bit file register address

Instruction Format Continue...

m Literal and control operations

m General
13 8 7 0

OPCODE k (literal)

k=8-bit intermediate value.

m CALL and GOTO instructions only
13 11 10 0

OPCODE k (literal)

k=11-bit intermediate value.

PICI6F8/X INSTRUCTION SET

Mnemonic Description Cycl | 14-bit Opcode Status
Operands es | MSb L Sb Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS

ADDWF f,d | AddWand f 1 |00 0111 dfff ffff C,DCZ
ANDWF f,d | AND W with f 1 |00 0101 dfff ffff Z
CLRF f Clear f 1 |00 0001 1fff ffff Z
CLRW - Clear W 1 00 0001 Oxxx XXXx Z
COMF f,d | Complement f 1 00 1001 dfff ffff Z
DECF f,d | Decrementf 1 00 0011 dfff ffff Z
DECFSZ f,d | Decrement f, Skip if O 1(2) |00 1011 dfff ffff
INCF f,d | Increment f 1 00 1010 dfff ffff Z
INCFSZ f,d | Increment f, Skip if O 1(2) |00 1111 dfff ffff
IORWF f,d | Inclusive OR W with f 1 00 0100 dfff ffff Z
MOVF f,d | Movef 1 |00 1000 dfff ffff Z

|nstruction Set Continue ...

Mnemonic Description Cycl 14-bit Opcode Status

Operands es | MSb LSb Affected
MOVWF f Move W to f 1 00 0000 1fff ffff
NOP - No Operation 1 00 0000 Oxx0 0000
RLF f, d | Rotate Left through Carry 1 00 1101 dfff ffff C
RRF f, d | Rotate Right through Carry 1 00 1100 dfff ffff C
SUBWF f,d | Subtract W from f 1 (00 0010 dfff ffff Z,DCZ
SWAPF f,d | Swap nibbles in f 1 00 1110 dfff ffff
XORWF f,d | Exclusive OR W with f 1 |00 0110 dfff ffff Z

BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f,b | Bit Clear f 1 |01 00bb bfff ffff
BSF f,b |BitSetf 1 |01 Olbb bfff ffff
BTFSC f,b | Bit Test f, Skip if clear 1(2) |01 10bb bfff ffff
BTFSS f, b | Bit Testf, Skip if set 1(2) (01 11bb bfff ffff
LITERAL AND CONTROL OPERATIONS

ADDLW k Add literal and W 11 111x kkkk kkkk C,DC,Z

Instruction Set Continue ...

Mnemonic Description Cycl 14-bit Opcode Status
Operands es | MSb L Sh | Affected
ANDLW k | AND literal with W 1 |11 1001 kkkk kkkk Z
CALL k | Call subroutine 2 |10 Okkk kkkk kkkk

CLRWDT - | Clear Watchdog Timer 1 |00 0000 0110 0100 | TO,PD
GOTO k | Go to address 2 |10 1kkk kkkk kkkk

IORLW k | Inclusive OR literal with W 1 |11 1000 kkkk kkkk Z
MOVLW k | Move literal to W 1 |11 00xx kkkk kkkk

RETFIE - Return from interrupt 2 |00 0000 0000 1001

RETLW k [Return with literal in W 2 |11 0lxx kkkk kkkk

RETURN - [Return from Subroutine 2 |00 0000 0000 1000

SLEEP - Go into standby mode 1 |00 0000 0110 0011 | TO,PD
SUBLW k Subtract W from literal 1 |11 110x kkkk kkkk | C,DC,Z
XORLW k | Exclusive OR literal with W 1 |11 1010 kkkk kkkk Z

Instruction Examples and Addressing
Modes

m Immediate or Inherent Addressing.
m Direct Addressing.

m Indirect Addressing

m Index Addressing.

Immediate Addressing

m In this addressing mode the data Is directly
provided in the Instruction, no memory
location Is used.

Direct Addressing

m The direct addressing mode accesses data
from a memory location located in one of
the four data banks.

m The bank is selected by suing IRP0O and
IRP1 bits of the status register.

m The data is then read or written by
providing the address of the instruction.

Sample Instructions & Addressing Modes

ADDLW Add Literal and W_(Immediate Addressing)
Syntax: [label] ADDLW k
Operands: 0=k =255
Operation: (W) +k 2> (W)
Status Affected: C,DC, Z
Encoding:
11 111x kkkk kkkk

Description: The contents of the W register are added to the eight bit

literal ‘k’ and the result is placed in the W register.
Words: 1
Cycles: B 1 01 Q2 03 Q4
Q Cycle Activity. Decode Read literal | Process data | Writeto W
Example: ADDLW 0x15 K

Before Instruction

W=0x10

After Instruction
W=0x25

Sample Instructions Continue..

ANDLW AND Literal with W__(Immediate Addressing)
Syntax: [label] ANDLW Kk
Operands: 0=k =255
Operation: (W).AND . (k) = (W)
Status Affected: Z
Encoding:

11 1001 kkkk kkkk
Description: The contents of the W register are AND’ed with the eight bit

literal ‘k’ and the result is placed in the W register.
Words: 1
Cycles: 1
Ql Q2 Q3 Q4
Q Cycle Activity: LVDecode Read literal | Process data | Writeto W
QK
DLW U X bF

Example:

Before Instruction

W =0 x A3

After Instruction

W=0x03

Sample Instructions Continue..

ADDWEF AddWandf _(Direct Addressing)

Syntax: [label] ADDWF f,d

Operands: 0=1f=127 d? [01]

Operation: (W) + (f) = (destination)

Status Affected: C.DCZ

Encoding: 00 0111 dfff ffff

Description: Add the contents of the W register with register ‘f ", If ‘d’ is
0 the result is stored in the W register. If ‘d’ is 1 the result is
stored back in register ‘f .

Words: 1

Cycles: 1 Q1 Q2 Q3 Q4

Decode | Read register ‘f | Processdata| Writeto

Q Cycle Activity:

Example:

destination

ADDWF FSR, 0
Before Instruction
W =0x17
FSR=0x C2
After Instruction
W =0xD9
FSR=0x C2

Sample Instructions Continue..

ANDWF AND W with f__ (Direct Addressing)

Syntax: [label] ANDWF f,d

Operands: 0=f=127

Operation: (W) . AND . (k) - (destination)

Status Affected: Z

Encoding: 00 0101 dfff ffff

Description: AND the W register with register ‘f ". If ‘d’ is O the result is stored
in the W register. If ‘d’ is 1 the result is stored back in register ‘f .

Words: 1

Cycles:

Q Cycle Activity:

Example:

1 o1 Q2 Q3 Q4

Decode | Readregister ‘f| Process Writeto
’ data destination

ANDWF FSR, 1
Before Instruction
W =0x17
FSR=0 x C2
After Instruction
W =0x17
FSR=0 x 02

LOADING OF PC IN

DIFFERENT SITUATIONS
PCH PCL

12 a8 7 D

|:-.:| : F":Lss._
;if PCLATH=4: 0 g H==linaion
1
LT T T 111
PCLATH

PCH PCL

12 1 10 8 7 o

P | I SoTO, CALL
- PCLATH <43 ii 11
[T T T TTT] Spende TR

FCLATH

PCL and PCLATH

m The program counter (PC) is 13-bits wide.

m The low byte comes from the PCL register, which is a
readable and writable register.

m The upper bits (PC<12:8>) are not readable, but are
Indirectly writable through the PCLATH register.

m The upper example in the figure shows how the PC is
loaded on a write to PCL (PCLATH<4.0>? PCH).

m The lower example in the figure shows how the PC is
loaded during a CALL or GOTO Iinstruction
(PCLATH<4:3>? PCH).

COMPUTED GOTO

m A computed GOTO is accomplished by adding
an offset to the program counter (ADDWF
PCL).

m When doing a table read using a computed
GOTO method, care should be exercised if the
table location crosses a PCL memory boundary
(each 256 byte block). Refer to the application
note, “Implementing a Table Read* (ANS556) for
more detalils.

Program Memory Paging

m When doing a CALL or GOTO Instruction, the upper 2
bits of the address are provided by PCLATH<4:3>.

m When doing a CALL or GOTO Instruction, the user
must ensure that the page select bits are programmed so
that the desired program memory page is addressed.

m |f areturn from a CALL instruction (or interrupt) IS
executed, the entire 13-bit PC is popped off the stack.
Therefore, manipulation of the PCLATH<4:3> bits IS
not required for the return instructions (which POPs the
address from the stack).

CALL OF A SUBROUTINE
IN PAGE 1 FROM PAGE 0

SUBR1l Pl

OREG OX 500
BECF FCLATH, 4
BESF FPCLATH, =

—ALL U1 P11

CORGSs OXXs o0

FETIOEREHN

cSalect page 1

s (200h-FFFIa)

s all subroutine in
:page 1 (B200h-FFFhij

:page 1 (200h-FFFhij

somlled subxryroutine
page 1 ({2C00h-FFFhis

sraturmn to

c—=all subroutinas
A page o

: (000 h-7FFIh}

Indirect Addressing, INDF and
FSR Registers

m The INDF register is not a physical register.

m Addressing the INDF register will cause indirect
addressing.

m Any instruction using the INDF register actually
accesses the register pointed to by the File Select
Register, FSR.

m Reading the INDF register itself, indirectly (FSR ='0")
will read 00h.

m An effective 9-bit address Is obtained by concatenating
the 8-bit FSR register and the IRP bit (STATUS<T7>),
as shown in Figure 2-6.

DIRECT/INDIRECT ADDRESSING

Direct Addressing Indirect Addressing
RP1:RPO 3 From Opcode I IRP [FSR registar 0

. v 7 . v A . J
Bank Salact J Location Saelact

Bank Select Location Ee-lect|
w (0 01 10 CI—

LN
‘ 0dh 80h 1000 180h
=

Data
Mearmory!!)

TFh FFh 17Fh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3

INDIRECT ADDRESSING

MOVLW 0x20 +1nitialize polinter
MOVRE FER ;Lo RAM
NEXT CLEF INDF ;clear INDF register
INCF FSR,F :1nc polnter
BTFSS FSR, 4 ;all done?
GOTO HMEXT :no clear next
CONTINUE
Yes continue

Index Addressing of Data Register

__

> Address to be

: fetched is stored
|in FSR and needs
 to be loaded using
INDF ’

LOOP

Index Addressing Continue..

MOVLW
MOVWF
CLRF
MOVLW
MOVWF
MOVF
ADDWEF

MOVWF
DECF
DECF
BTFSS
GOTO

n ; N 2> (Immediate)
CNT N 2>CNT

SUM . 0 >SUM

n

FSR N 2>FSR
SUM,W SUM 2>W

INDFW ;SUM+

‘Reg (nN)>SUM
SUM W ->SUM
FSR, F ' n-1->FSR
CNT,F CNT-1>CNT
Status, z Sleep If z Is set
LOOP

Implementing a Table Read

moviw offset ;load offset in w registe
call Table
Table: addwf PCL,F ,add offset to pc to generate
,a computed go to
retlw ‘A’ ‘return the ASCII char A
retlw ‘B’ ‘return the ASCII char B

retiw ‘C’ ‘return the ASCII char C

IMPLEMENTATION EXAMPLES

1. 1/0 Interfacing

2. Designing a wait loop
3. Designing table look up
4. Using TIMER

5. Interrupt Realization

Laboratory Equipment

Parts List:
1. Breadboard
2. PIC 16F877 Microcontroller
3. 8 LEDs
4. 8470 ohms Resisters
5. 810 kilo ohms Resisters
6. 8 position DIP switch

Circuit Diagram

RD<7:0>

MC

RB<7:0>

4.7 va+§ i
W2 o

e

Anode

o
[)
Cathode
Bottom View

Circuit Diagram

4.7k 3V
WV—i 40|RBT AN
2 39| REB etV
3 38| RBS ——Aan®
4 37| kB4 AN
5 36 |RB3 AN
5 35| RB2 AN
T 34 | RB1 AN
§ 33| RBO ANV
9 32 ‘
Vss (5V) 10 1 Ground EOV)
11 0| =
12 29| RD7
13 28| RD6 470
14 27| RDS ol ANAS 4— 5V
15 26 | RD4 » ANV 5V
16 25 | b1
17 24 & e | .
18 23 i — AN ——
—RD0 |19 22| kD3 4 ANV 4— 5V
—RD1 | 20 21| Rp? ol s —— 5V
o’ v 5V
o A —— 5V

WA
WA
VA
A
T

h
<

Program 1(1/0 Interface, Read and Write)

; This program is written for PIC16F877 microcontroller to read the value of 8
;DIP switches connected to PORTB and display their value on 8 LEDs connected
;to PORTD.

***BANK1REGI STER SET

OPTIONR EQU 81 ;define the registers by assigning the address of them

TRISA EQU 85 :in the RAM to their |abel
TRISB EQU 86 ;1.e. TRISA register isreferring to program memory
TRISC EQU 87 ;location of 85 in Hex

TRISD EQU 88

Program 1 Continue ...

TRISE EQU 89
SPBRG EQU 99

TMRO EQU
PC EQU
STATUSEQU
FSR EQU
PORTA EQU
PORTB EQU
PORTC EQU
PORTD EQU
PORTE EQU
INTCON EQU
PIRL EQU
RCSTA EQU
RCREG EQU

© 00 N O O b WODN B

> o 3 B

Program 1 Continue ...

TEMP EQU
TIME EQU
TIME2 EQU
COUNT EQU
RATE EQU
RATEBAK EQU

C EQU
DC EQU
Z EQU
RPO EQU

RP1 EQU

35

;these are specia function registers, which you can use
;to save some data, like variable declaration in C and
;Java and other programming language

Program 1 Continue ...

GIE EQU 7
TOIE EQU 5
TOIF EQU 2

Program 1 Continue ...

Program 1 Continue ...

ORG 0O ;this ORG 0 means that you are at memory |location 0000
RESET GOTO MAIN ;now wetell the MC to go to the main body

ORG 04
INT CALL INTHND ;when interrupt comes call interrupt handler routine
RETFIE ;return from interrupt after doing work in

INTHND

Program 1 Continue ...

ORG 20
MAIN CLRF INTCON ;clear INTCON to disable al interrupts

BSF STATUS, RPO ;get to Bankl of memory (RP1:RPO = 01)
BCF STATUS, RP1 ; because TRIS registers are in Bank1l

MOVLW OXFF ;put FFIin TRISB so it is all ones, means
MOVWF TRISB ; dl pinsinput, 0 means output, 1 = input pin
CLRF TRISD ,clear TRISD, all zeros, al output

BCF STATUS,RPO

Program 1 Continue....

LOOP NOP
NOP
MOVF PORTB,W ;move the value of the switch to w using port b
MOVWEF PORTD ;move w to LEDsthrough PORTD
GOTO LOOP ;keep circulating in the same loop

END ;end of the program

Program 2(Flash LEDs Using Wait loop)

LIST P=16F877 ;determine the type of the PIC
ORG o) ;Reset Vector
RESET GOTO MAIN ;now we tell the MC to goto the main body
ORG 04 ;Interrupt vecotor
INT CALL INTHND ;when interrupt comes call interrupt handler routine
RETFIE ;return from interrupt

ORG 20
MAIN CLRF INTCON ;clear INTCON to disable al interrupts

BSF STATUS,RPO ;get to bank1 of memory (RP1:RPO = 01)
BCF STATUS,RP1 ; because TRIS registers are there

LOOP

Program 2 Continue ...

MOVLW OXFF ;put FF in TRISB so it isall ones, means all pinsinput
MOVWF TRISB ;0 means output, while 1 make the pin an input pin
CLRF TRISD ;clear TRISD, all zeros, all ouput

BCF STATUSRPO ;go back to bank0

BCF STATUS,RP1

MOVLW OXFF ;put FF in TEMP register which is a variable register
MOVWF TEMP ;move ff first to W register then from W to TEMP
MOVLW OXFF ;put FF in COUNT register which is a variable register
MOVWF COUNT ;move FFfirst to W register then from W to COUNT
MOVLW OXFF ;put FF in COUNT1 register which is a variable register

MOVWF COUNT1 ;move FFfirst to W register then from W to COUNT

COMF TEMP,F ;complement TEMP and put theresultin TEMP" O or FF"
MOVF TEMPW ;move TEMP to PORTD, first move TEMP to w then to
MOVWF PORTD ;PORTD

WAIT

Program 2 Continue ...

MOVLW OXFF ;now again fill COUNT with FF for the next waiting loop
MOVWF COUNT

MOVLW OXFF ;now again fill COUNT1 with FF for the next waiting loop
MOVWF COUNT1

MOVLW 0X05 ;now again fill RATE with 05 for the next waiting loop
MOVWF RATE

CALL WAIT ;cal wait loop

GOTO LOOP

DECFSZ COUNT,F ;decrement count and check if it is zero go check countl,

else
GOTO WAIT ;goto wait and keep decrementing it untill it become O
DECFSZ COUNTL,F
GOTO WAIT
DECFSZ RATEF
GOTO WAIT
RETURN ;if al counting registers become zero, then return to loop

END ;end of the program

Program 3 (Flash LEDs Using Wait |loop &
Using Different rates)

LIST P=16F877
ORG 00

RESET GOTO MAIN

MAIN

ORG 20
CLRF INTCON

BSF STATUSRPO
BCF STATUSRP1
MOVLW OXFF
MOVWF TRISB

CLRF TRISD

BCF STATUSRPO
BCF STATUSRP1

;determine the type of the PIC

;now we tell the MC to go to the main body

;Clear INTCON to make sure al interrupts are disabled

;get to bank1 of memory (RP1:RPO = 01) because TRIS
;registers are there

;put FFin TRISB so it isall ones, means all pinsinput
;0 means output, while 1 make the pin an input pin
.clear TRISD, all zeros, all output

;9o back to bankO

LOOP COMF
MOVF

MOVWF
CALL

MOVWF
MOVWF

Program 3 Continue...

TEMP,F

TEMP,W

PORTD
READS
RATE
RATEBAK

;put FF in TEMP register which is a variable register
;move ff first to W register then from W to TEMP

;put FF in COUNT register which is avariable register
;move FF first to W register then from W to COUNT
;put FF in COUNT1 register which is a variable register
;move FF first to W register then from W to COUNT

;complement TEMP and put the result in TEMP "TEMP
either O or FF"

:move TEMP to LEDs through PORTD, first move
TEMPtow then to

;PORTD

;call read switch

;when returned w will be filled with the desired rate
;thus we move it to rate and rate backup registers

Program 3 Continue..

MOVLW OXFF ; fill COUNT with FF for the next waiting loop
MOVWF COUNT

MOVLW OXFF ; fill COUNT1 with FF for the next waiting loop
MOVWF COUNT1

MOVF RATEBAK,W ; fill RATE with RATE BACKUP

MOVWF RATE

CALL WAIT ;call wait loop

GOTO LOOP

READS MOVF PORTB,W ;move PORTB to w to take the switch values
ANDLW 0X07 ;get only the less three bits of w as the rate
ADDWF PC,F ;add w to pc to
RETLW 0X01 ;if w =0, pc = pc, then return with 0x01 in W
RETLW 0X02 ;if w =1, pc = pct+1, then return with 0x02 in W
RETLW 0X04 J1f w =2, pc = pct+2, then return with 0x04 in W
RETLW 0X06 ;if w = 3, pc = pc+3, then return with 0x06 in W
RETLW 0XO08 J1f w =4, pc = pc+4, then return with 0x08 in W

RETLW O0XOA ;if w =05, pc = pct5, then return with Ox0A in W

Program 3 Continue..

J1f w = 6, pc = pc+6, then return with 0xOC in W
1f w =7, pc = pc+7, then return with OXOE in W

RETLW 0X0C
RETLW OXO0E

;wait loop

WAIT DECFSZ COUNT,F

GOTO WAIT
DECFSZ COUNTL1,F
GOTO WAIT
DECFSZ RATEF
GOTO WAIT
RETURN

END

;decrement count and check if it is zero go check
;countl, else

;9o to wait and keep decrementing it until it isO

;if all counting registers become zero, then return to
;loop

;end of the program

Program 4 (Flash LED<s Using Wait |oop
(using TMRO) & Different rates)

LIST P=16F877 ;determine the type of the PIC
ORG 00
RESET GOTO MAIN

ORG 20
MAIN CLRF INTCON ;Clear INTCON to make sure al interrupts are disabled

BSF STATUSRPO ;get to bank1 of memory (RP1:RPO = 01)
BCF STATUSRP1 ; because TRIS registers are there
MOVLW OXFF ;put FFin TRISB soitisall ones, al input
MOVWF TRISB ;0 means output, while 1 mean input
CLRF TRISD ;,clear TRISD, all zeros, all output

BCF STATUSRPO ;9o back to bankO

BCF STATUSRP1

Program 4 Continue ...

BSF STATUSRPO ;get access to bankl if we are not there

BCF STATUSRP1

BCF OPTIONR, TOCS ;set TMRO increment every internal instruction cycle
BCF OPTIONR, TOSE ;TMRO increment on low-to-high transition of clock

BSF OPTIONR, PO ;set the pre-scalar for TMRO to overflow after 256
BSF OPTIONR, PS1 ;instruction cycle or FF in hex

BSF OPTIONR, PS2

BCF STATUS,RPO ;g0 back to bankO

BCF STATUSRP1

Program 4 Continue...

MOVLW OXFF ;put FF in TEMP register which is a variable register
MOVWF TEMP ;move ff first to W register then from W to TEMP
MOVLW OXFF ;put FF in COUNT register which is avariable register
MOVWF COUNT ;move FF first to W register then from W to COUNT
MOVLW OXFF ;put FF in COUNT1 register which is avariable register
MOVWF COUNT1 ;move FF first to W register then from W to COUNT

COMF TEMPF ;complement TEMP and put the result in TEMP “0 or FF”
MOVF TEMPW ‘move TEMP to PORTD, first move TEMP to w then to
MOVWF PORTD 'PORTD

CALL READS -call read switch

Program 4 Continue ...

MOVWF RATE ;when returned w will be filled with the desired rate

MOVWF RATEBAK ;thus we move it to rate and rate backup registers

MOVLW OXFF ;now again fill COUNT with FF for the next waiting loop

MOVWF COUNT

MOVLW OXFF ;now again fill COUNT1 with FF for the next waiting loop

MOVWF COUNT1

MOVF RATEBAK,W ;now again fill RATE with RATE BACKUP for the next
;waiting loop

MOVWF RATE

CALL WAIT ;call wait loop

GOTO LOOP

READS MOVF

PORTB,W ;move PORTB to w to take the switch valuesin W register
ANDLW 0XO07 ;get only the less three bits of w as the rate (00000111)
ADDWF PCF ;add w to pc to specify which instruction will be execute
RETLW 0XO01 ;1f w =0, pc = pc, then return with 0x01 in W
RETLW 0X02 J1f w =1, pc = pc+1, then return with 0x02 in W
RETLW 0X04 J1f w =2, pc = pc+2, then return with 0x04 in W
RETLW 0X06 ;1f w = 3, pc = pc+3, then return with 0x06 in W

WAIT

Program 4 Continue...

RETLW 0X08
RETLW OXO0A
RETLW 0XO0C
RETLW OXOE

BTFSS INTCON,TOIF

GOTO WAIT

DECFSZ COUNT1,F
GOTO WAIT
DECFSZ RATE,F
GOTO WAIT
RETURN

END

J1f w =4, pc = pc+4, then return with 0x08 in W
J1f w =5, pc = pc+5, then return with Ox0A in W
J1f w = 6, pc = pc+6, then return with 0xOC in W
1f w =7, pc = pc+7, then return with OXOE in W

;decrement count and check if itis zero go
;check countl, else

;0o to wait and keep decrementing it untill it
;become 0

;1If all counting registers become zero, then
;return to loop

;end of the program

Program 5 (Flash LEDs I nterrupts)

RESET GOTO MAIN

ORG 04
INT CALL INTHND
RETFIE

ORG 20
MAIN CLRF INTCON

BSF STATUSRPO
BCF STATUSRP1
MOVLW OXFF
MOVWF TRISB

CLRF TRISD

;now we tell the MC to goto the main body

;when interrupt comes call interrupt handler routine
;return from interrupt after doing work in INTHND

;clear INTCON to make sure all interrupts are disabled

;get to bank1 of memory (RP1:RPO = 01) because TRIS
;registers are there

;put FF in TRISB so it isall ones, means all pinsinput
;0 means output, while 1 make the pin an input pin
;clear TRISD, all zeros, all output

BSF
BSF

BCF

INTCON, GIE ;Set genera interrupt enable bit to enable al interrupt

INTCON, TOIE ;set TMRO interrupt enable bit to enable TMRO
;interrupt

INTCON, TOIF ;clear TMRO flag, TMRO doesn't overflow yet

STATUS,RPO ;get access to bank1 if we are not there
STATUSRP1

OPTIONR, TOCS ;set TMRO increment every internal instruction cycle
OPTIONR, TOSE ;TMRO increment on low-to-high transition of clock
OPTIONR, PSO ;set the pre scalar for TMRO to overflow after 256
OPTIONR, PS1 ;instruction cycle or FF in hex

OPTIONR, PS2

STATUS,RPO ;g0 back to bankO

STATUSRP1

Program 5 Continue ...

MOVLW OXFF
MOVWF TEMP
MOVLW OXFF
MOVWF COUNT

NOP

NOP

NOP

BCF INTCON,TOIF
BSF INTCON,GIE
BSF INTCON,TOIE
CALL READS
MOVWF RATE

MOVWF RATEBAK
GOTO LOOP

;put FF in TEMP register which is a variable register
;move ff first to W register then from W to TEMP

;put FF in COUNT register which is avariable register
;move FF first to W register then from W to COUNT

;thisloop will take you to the READS every time and it
;isnot doing else, but wait until interrupt

;comes, then the program counter PC will jump
;automatically to interrupt vector where the flashing task
;1S gone be done.. the other instruction is to enable the
;interrupt every time

;call READS to get the RATE from the switches

;when returned w will be filled with the desired rate
;thus we move it to rate and rate backup registers

Program 5 Continue ...

READS MOVF PORTB,W ;move PORTB to w to take the switch valuesin W register

ANDLW 0XO07 ;get only the less three bits of w as the rate (00000111)
ADDWF PCF ;add w to pc to specify which instruction will be execute
RETLW 0XO01 ;1f w =0, pc = pc, then return with 0x01 in W

RETLW 0X02 ;1f w =1, pc = pc+1, then return with 0x02 in W
RETLW 0X04 J1f w =2, pc = pc+2, then return with 0x04 in W
RETLW 0X06 J1f w = 3, pc = pc+3, then return with 0x06 in W
RETLW 0X08 ;1f w =4, pc = pc+4, then return with 0x08 in W
RETLW OXO0A ;if w =5, pc = pct+5, then return with OX0A in W
RETLW 0X0C J1f w = 6, pc = pc+6, then return with 0OxOC in W
RETLW OXOE J1f w =7, pc = pc+7, then return with OXOE in W

INTHND DECFSZ COUNT,F ;decrement countl skip if zero, if countl = zero, then
GOTO LOOP1 ;we go decrement rate. if not we go to Loopl
DECFSZ RATE,F ;1f count = 0, then we decrement rate and check if it is zero

Program 5 Continue ...

GOTO LOOP1

WORK COMF

LOOP1

MOVF
MOVWF
MOVLW
MOVWF
MOVF
MOVWF

BCF
BSF
BSF
RETURN
END

TEMP,F

TEMP,W
PORTD

OXFF
COUNT
RATEBAK,W
RATE

INTCON,TOIF
INTCON,GIE
INTCON,TOIE

;then we go and do the work, otherwise we goto
;loopl

;1f both COUNT and RATE are becomes O, then this mean
;thisis the time to complement the LEDs through PORTD

;complement TEMP and put the result in TEMP “
O or FF"

;move TEMP to PORTD, first move TEMP to w then to
;PORTD
;now again fill COUNT with FF for the next waiting loop

;0et the value of the RATE from the RATE bakup register
;loopl do nothing but enable the interrupt again and get
; you out of the INTHND subroutine

‘return from the INTHND subroutine
;end of the program

