Power Quality Issues from an EMC Point of View

Brian Jones BSc (Hons) C Eng MIEE MIEEE

Overview

- What is EMC?
- How does it apply to power quality?
- The effects of equipment on power quality
- The effects of power quality on equipment
- Some typical requirements
- Hot topics

What is EMC?

- Electromagnetic compatibility is
 - the ability of a product to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbance to anything in that environment
- In simple terms
 - don't emit too much
 - be sufficiently immune

The three elements

- The source
 - the origin of electromagnetic disturbance (unwanted electromagnetic energy)
- The victim
 - something that may be affected by electromagnetic disturbance
- The coupling path
 - the means by which the disturbance is transferred from source to victim

all three are needed

What is an electromagnetic environment?

- The totality of the electromagnetic energy in a location
 - spectrum considered to be 0 Hz to 300 GHz
 - energy may be conducted or radiated
 - electrostatic discharges
- The topic today is power quality
 - EMC issues related to power supply

Phenomena - 1

- Low frequency
 - power frequency harmonics and interharmonics
 - flicker
 - inrush current
 - mains signalling
 - voltage fluctuations
 - voltage dips and interruptions
 - voltage unbalance
 - power frequency variations

Phenomena - 2

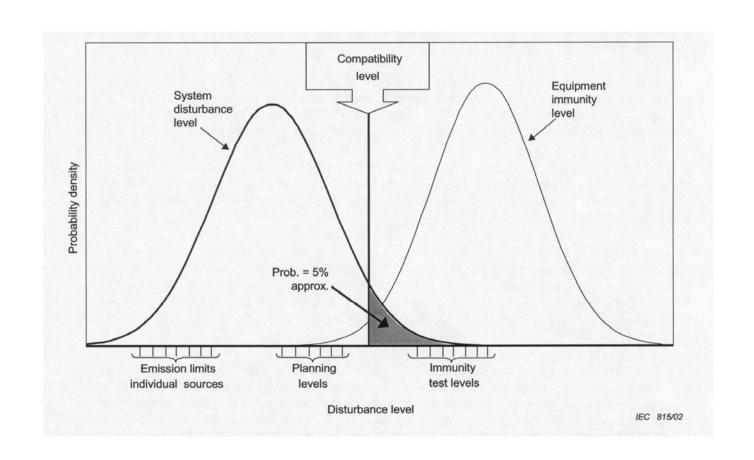
- High frequency
 - radio frequency energy (cw and modulated)
 - transients
 - surges
- New threats
 - powerline communications (digital signals 1 Mbit/s and above)

Legislation for apparatus

- EMC Directive 89/336/EEC (plus amendments)
- EMC Regulations (SI 1992 No. 2372 plus amendments)
- Legal requirement in the UK since 1.1.1996
- "Protection requirements" for products which are
 - properly installed and maintained
 - used for their intended purpose

Protection requirements

- Apparatus shall be so constructed that
 - the electromagnetic disturbance it generates does not exceed a level allowing other relevant apparatus to operate as intended
 - it has a level of intrinsic immunity which is adequate to enable it to operate as intended
- The protection requirements are intended to ensure compatibility between apparatus, equipment, systems and networks


Harmonised standards

- The EMC Directive does not contain technical requirements
- These are contained in harmonised standards
 - product
 - product family
 - generic
- Underpinned by basic standards
 - test methods and guidance

Compatibility levels - 1

- In general, emission limits protect radio receivers
 - they have to be receptive at the wanted frequency
- In general, immunity limits protect against radio transmitters and natural phenomena
 - high levels of disturbances at transmitting antennas
 - electrostatic discharges, lightning
- Not so clear-cut at lower frequencies

Compatibility levels - 2

Emissions from apparatus - 1

- Harmonics (to 40th i.e. 2 kHz)
 - Different limits according to threat
 - Tightest limits on TVs and PCs
 - Most relaxed limits on portable tools
- Flicker (change in voltage caused by change in load)
 - short term (minutes)
 - long term (hours)
 - maximum change (generally switch on/off)

Emissions from apparatus - 2

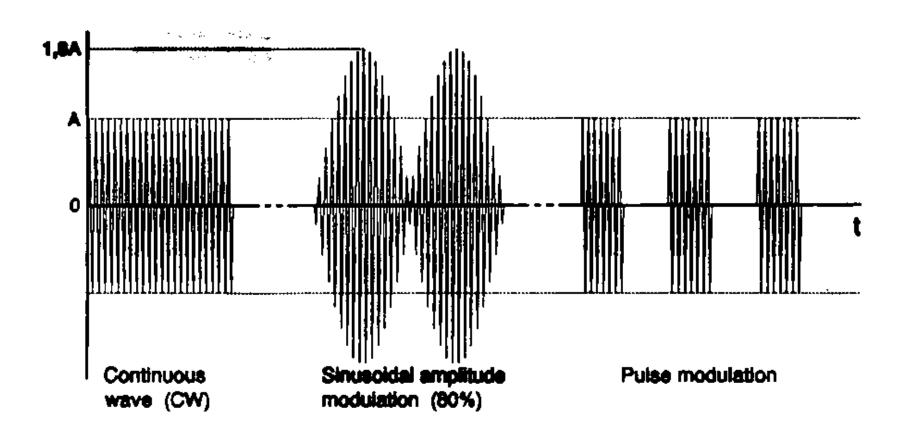
- Radiofrequency emissions on power supplies
 - generally 150 kHz to 30 MHz (or 300 MHz for household appliances)
 - limits set to protect radio receivers
 - measured using a LISN or clamp
 - rf energy radiates from power cables due to antenna effect
 - above 30 MHz measurements are usually of radiated energy

Emissions from apparatus - 3

- Discontinuous disturbances (clicks)
 - limits for short duration disturbances
 - apply to thermostatically-controlled appliances, automatically controlled machines
 - subjectively less annoying than continuous disturbances
 - limits are relaxed unless there are 30 clicks/minute or more

Immunity

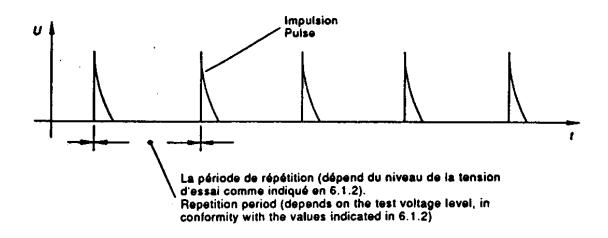
- The power supply may transmit high frequency disturbances as
 - rf energy as cw or modulated signals
 - fast transients from switching
 - surges from lightning
- It may suffer from
 - harmonics, interharmonics, flicker, frequency variations
 - voltage fluctuations, interruptions

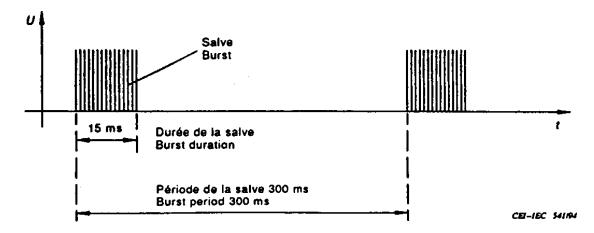

Immunity for apparatus

- Basic standards exist for testing all these phenomena
- Not all are applied in product standards
 - cost of testing
 - products immune to one phenomenon are often immune to others
 - some threats are low
- We will look at some typical requirements

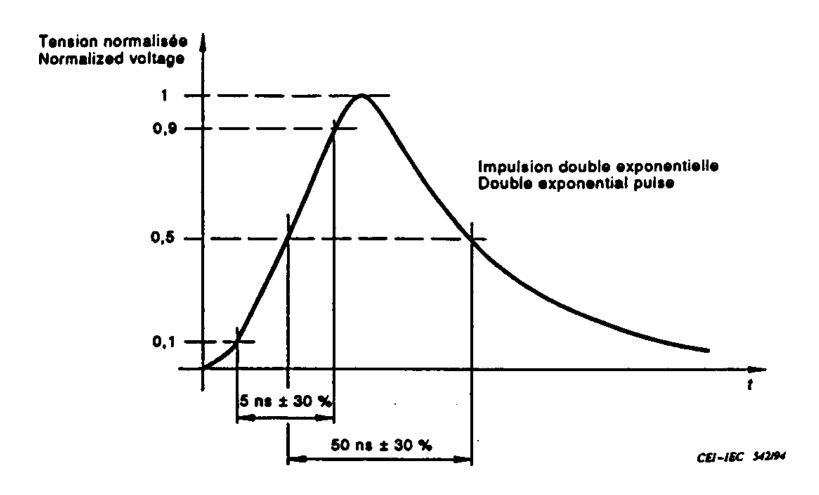
Radiofrequency immunity

- Generally 150 kHz to 80 MHz
 - modulated 1 kHz 80% amplitude (next slide)
 - swept or steps of 1%
- 3 V rms domestic, 10 V rms industrial
- Applied by coupling network, a clamp, or directly to the screen of screened cables
- Test are performed on all cable types
 - cable by cable


RF immunity modulation

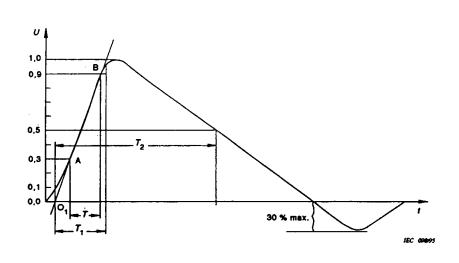


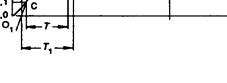
Fast transients


- Pulses caused by opening switches, relays, etc.
 - in bursts
- Typically 1 kV on domestic ac mains, 2 kV on industrial mains
- Applied in positive and negative polarities
- Coupling network on mains supplies
- Capacitive clamp on signal lines

Burst repetition

Transient waveshape


Surges


- Slower pulses induced in cables by lightning strikes in the vicinity
- 2 kV line earth and 1 kV line ground
 - domestic and industrial
 - plus "let-through" of any primary protection
- Applied by coupling networks to mains supplies
 - at 0, 90, 180, 270 degrees
 - positive and negative surges

Surge waveshape

open circuit

short circuit

Front time:

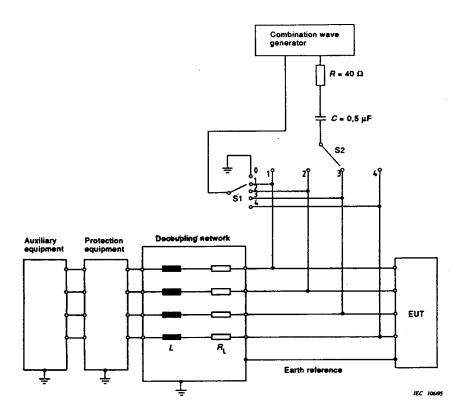
 $T_1 = 1,67 \times T = 1,2 \ \mu s \pm 30 \%$

Time to half-value:

 $T_2 = 50 \ \mu s \pm 20 \%$

Front time:

 $T_1 = 1,25 \times T = 8 \mu s \pm 20 \%$


Time to half-value:

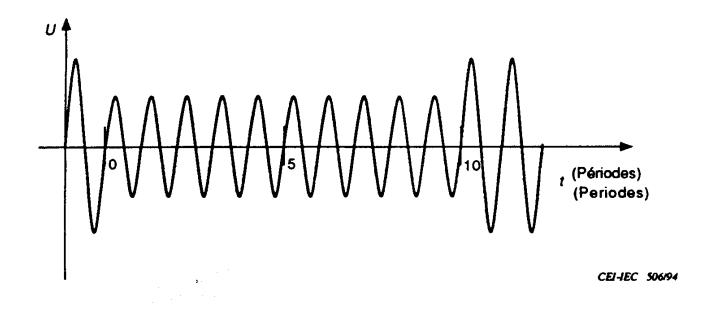
 $T_2 = 20 \, \mu s \pm 20 \, \%$

30 % max.

IEC 099/95

Surge coupling network

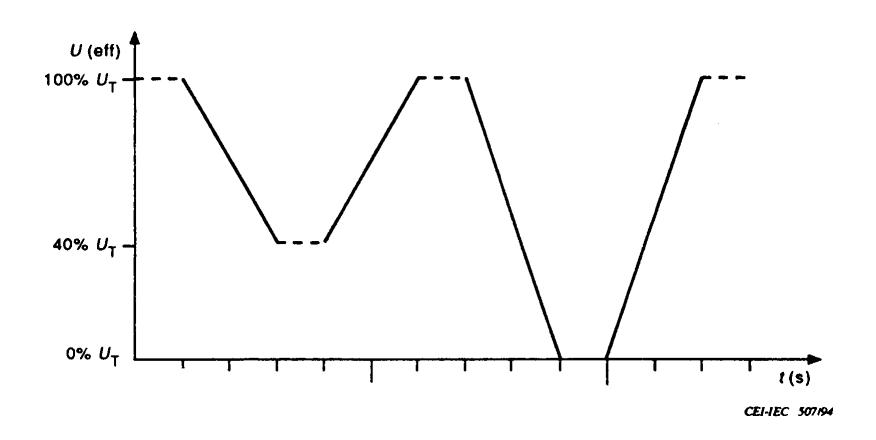
- 1) Switch S1
 - line to earth: position 0
 - line to line: positions 1 to 4
- Switch S2


 during the test positions 1 to 4, but not in the same position with switch S1
- 3) L = 20 mH, R_L represents the resistive part of L

Voltage dips and interruptions

Dips

- short term reduction of voltage to non-zero level and restoration
- percentage reduction varies from standard to standard
- Interruptions
 - short term reduction to zero and restoration
- Step change is made at zero crossing


Typical waveshape - dips

NOTE - La tension d'alimentation diminue à 70 % pendant 10 périodes. Démarrage au passage par zéro.

NOTE - The voltage decreases to 70 % for 10 periods. Step at zero crossing.

Voltage variation

Performance criteria

- Three criteria
- Criterion A
 - operate as intended during and after test
- Criterion B
 - operate as intended after the test
 - degraded performance allowed during the test
- Criterion C
 - temporary loss of function allowed
 - self recoverable or by operation of controls

Generic standards requirements

- RF immunity
- Fast transients
- Surges
- Voltage dips
 - short periods (half cycle)
 - long periods (five cycles)
- Voltage interruptions

Hot topics

- Harmonics requirements for TVs and PCs
 - too onerous?
- Power Line (Tele)Communications PLT/PLC
 - broadband over the (unbalanced) mains network
 - needs a signal-to-noise ratio to function
 - therefore signals need to be higher than current emissions limits
 - but current emissions limits protect radio services
 - outcome unclear!
- EN 50160 Voltage characteristics of electricity supplied by public distribution systems
 - parameters not specified for 100% of the time

Brian Jones EMC Consultant

Thank you for listening

Questions?

Contact details

Brian Jones

EMC Consultant and Competent Body signatory

89 Widney Road

Knowle

Solihull B93 9EA

Tel/fax 01564 773319

Email emc@brianjones.co.uk