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1. Introduction
n recent years, real-time computing has emerged as an
important discipline in computer science and engineering.
With ever-increasing computational power, more systems
are being implemented in software to exploit the flexibility

and sophistication afforded by software implementations. However, as
real-time software becomes more complex, software design styles play
an important role in software and system development.

Traditionally, the real-time community has been very reluctant to adopt
new software design technologies. This is due in part to the high perfor-
mance and stringent response times required for many such systems,
which often compel developers to use very low-level techniques.
Another factor that contributes to this conservative mentality is the high
cost and safety requirements in many such systems. Thus, an approach
that has proven to work is preferred over possibly better but less proven
technologies.

Recent developments in modern computing technology, however, chal-
lenge both these traditional assumptions. Computers are becoming
faster and software development tools are becoming more powerful.
Also, as the demand for more sophisticated functionality increases and
software becomes more complex, traditional low-level techniques can
no longer keep up. Hence, for many real-time applications, the need to
utilize more sophisticated state-of-the-art methodologies is critical to
ensure that they meet safety requirements. 

1.1 Characteristics of real-time systems 

Broadly speaking, a real-time system is any system that responds in a
timely manner. Thus, “time” is a resource of fundamental concern in
real-time systems, and activities must be scheduled and executed to
meet their timeliness requirements. Timeliness requirements (and sys-
tems) are often classified into hard real-time, where failure to meet a
deadline is treated as catastrophic system failure; and soft real-time,
where an occasional missed deadline may be tolerated. 

Another fundamental characteristic of many real-time systems is that
they are embedded systems, i.e., they are components of a larger sys-
tem that interacts with the physical world. This is often the primary
source of complexity in real-time systems. The physical world typically
behaves in a non-deterministic manner, with events occurring asynchro-
nously, concurrently, and in an unpredictable order. Whatever happens,
the embedded real-time system must respond appropriately and in a
timely fashion.

The concurrency of the physical world usually implies that real-time
system software must also be concurrent. In fact, one of the primary
requirements of many real-time systems is to synchronize multiple con-
current activities arising in the environment. Unfortunately, concurrency
adds complexity to software design since it conflicts with the inherently
serial, cause-and-effect flow of human reasoning.

Another salient characteristic of many real-time systems is dependabil-
ity. Many real-time systems play a crucial role in their environments
and failure to perform correctly may result in significant costs or jeopar-
dize human safety. As a result, real-time systems must often be highly
reliable (i.e., they must perform correctly), and available (i.e., they must
operate continuously).

1.2 Overview of the Article

Due to space limitations, in this article we focus our attention to the
concurrency and timeliness aspects of real-time systems. We begin with
an overview of techniques to manage concurrency and timeliness issues
in real-time systems. Then we present two software design styles and
show how these issues are addressed in the two styles, and discuss the
strengths and limitations of each. Next, we present an overview of the
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Dans cet article, on présente un survol des plus récents progrès tech-
nologiques accomplis dans le domaine de la conception de logiciels
en temps réel. Une attention particulière est portée aux techniques
normalisées servant à gérer les questions clés de la concurrence
d'accès et de la synchronisation ainsi qu'aux outils utilisés pour leur
mise en application. On décrit l'évolution des divers styles de con-
ception des logiciels en temps réel. En conclusion, on présente un
bref examen des principales nouvelles tendances technologiques dans
ce domaine.

In this article, a high-level overview of the state of the art of real-
time software design is presented. In particular, attention is focused
on standard techniques for dealing with the critical issues of concur-
rency and timeliness as well as the tools that support them. The
various design styles that have evolved over time for constructing
real-time software are also described. In conclusion, a brief review of
the principal technological trends currently emerging in the field are
described.

technologies and tools available to a real-time software developer.
Finally, we conclude by identifying some future challenges.

2.  Concurrency Management
One major concern in the design of real-time systems is the manage-
ment of concurrency. Even in single processor systems, concurrency is
often used to both simplify the software structure, and to improve
responsiveness of the system to critical events. This form of concur-
rency is referred to as multi-tasking, and involves time multiplexing of
many concurrent tasks on a single physical processor. However, while
concurrency is a necessary tool to manage timely response in a system,
it is also fraught with difficulties. Our inherent inability to properly rea-
son about concurrency can lead to subtle bugs in software that are
difficult to find and fix, and this makes it difficult to realize the neces-
sary level of reliability. Concurrency also makes performance
estimation more complex.

Consequently, special concurrency management techniques have been
developed to ensure that concurrency is used in a controlled manner.
These are based on three types of mechanisms:

• mechanisms for representing and tracking the progress of concur-
rent activities within a computer

• mechanisms for communicating between concurrent activities
• mechanisms for synchronizing the execution of multiple concur-

rent activities.

2.1 Abstractions for Concurrent Activities

The most common mechanism for representing concurrent activities is
to provide each activity with a “virtual” processor that executes a thread
of control and maintains its state during this execution. This virtual pro-
cessor is typically referred to as a process. Normally, each process has
its own address space that is logically distinct from the address space of
other processes. Unfortunately, the overhead required to switch the
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physical processor from one process to another is often prohibitive. It
involves context switching, time-consuming swapping of register sets
within the CPU that typically takes many tens, possibly hundreds, of
microseconds even with modern high-speed processors.

To reduce this overhead, many operating systems provide the ability to
include multiple lightweight threads within a single process. The
threads within a process share the address space of that process. This
reduces the overheads of context switching, but increases the likelihood
of memory conflicts.

It is often possible to further reduce the context switching overhead by
constructing even lighter-weight concurrency abstractions at the appli-
cation level (i.e., above the operating system). This technique is quite
common in very large systems with large numbers of concurrent
threads. It relies on doing application-controlled context switching at
points when there is little or no context that needs to be saved. This type
of context switch does not require crossing the “heavyweight” bound-
ary between the kernel-level and the user level of the processor and,
therefore, multiple application-level threads may be multiplexed on a
single operating system thread. These application-level threads are
scheduled by an application-specific scheduler operating within the
operating system thread.

Active object abstraction is an example of such application-specific
concurrency management. An active object receives events from out-
side (typically placed by a sender in a queue), and responds to events in
a run-to-completion manner. That is, new arriving events cannot pre-
empt the processing of the event being handled. Once event processing
completes, data and call stacks of the active object are empty and do not
need to be saved during a context switch for the next event. Multiple
active objects may be combined into a single operating system thread,
sharing its data and call stacks. In this case, scheduling of active objects
takes place only on completion of a previous event handling.

2.2 Communication Mechanisms

Data communication is usually based on either shared data or message
passing. In a shared data paradigm, two or more threads can access
shared data objects, and thus indirectly communicate with each other.
Message passing, on the other hand, involves explicit exchange of data
between two threads.

When shared data is used between threads, concurrent access can lead
to inconsistent updates. Thus, the shared data must often be accessed in
a critical section (i.e., in a logically atomic action), and a synchroniza-
tion mechanism called mutual exclusion is used to achieve this.
Mechanisms to achieve mutual exclusion are described in the next sec-
tion. Shared memory communication is automatically available between
threads sharing an address space. Even with processes, many operating
systems will allow creation of shared memory regions between
processes.

In message passing communication, the communication can be asyn-
chronous or synchronous. In asynchronous communication, the sending
activity does not synchronize with the receiver; instead it forwards
information to some queue from where the receiver can retrieve it later.
The sender and the receiver proceed independently of each other, and
cannot make assumptions about each other's state. Synchronous com-
munication includes synchronization between the sender and the
receiver in addition to the exchange of information. In pure synchro-
nous communication, the sender must rendezvous with the receiver to
exchange information. Most operating systems support some form of
message passing communication between processes or threads. Mes-
sage passing between threads in a single process can also be built using
shared memory and synchronization mechanisms described in the next
section; this is often more efficient since the operating system is not
involved in the communication.

2.3 Synchronization Mechanisms

Synchronization involves coordinating the execution of two or more
activities in such a way that concurrency conflicts are avoided. Mutual
exclusion is one form of such synchronization. It is relatively simple to
achieve using mutex locks or semaphores; the problem with these

mechanisms is that they are low-level abstractions that are independent
of application semantics. This means that the semantic link between the
application and the synchronization mechanism (e.g., the application-
specific circumstances under which it is necessary to synchronize), must
be constructed by the application programmer. Furthermore, these
mechanisms are highly error prone since the synchronization code is
typically spread throughout the application program, often making it
difficult to understand and maintain.

A safer approach to managing such concurrency conflicts is to encapsu-
late shared data as private data of protected objects and making the data
accessible through operations invoked on the object. In principle, at
most one concurrent thread at a time is allowed to access the protected
object. In this way, the synchronization code is encapsulated within the
shared data objects, and different threads can safely invoke operations
on the data object without worrying about concurrency conflicts.

More general forms of synchronization requirements may require a con-
current activity to wait for some event to occur before proceeding. In
this case, the activity is blocked using synchronization abstractions like
condition variables. The activity can be woken up by signaling on the
condition variable. Normally these are used in conjunction with shared
memory and mutual exclusion to solve synchronization problems.

3. Real-time Performance Analysis
Real-time performance analysis is an essential part of most real-time
systems, and is used to estimate whether a system will meet its timeli-
ness requirements.

3.1 Execution Time Estimation

To estimate the performance of a concurrent system, we must first be
able to estimate the performance of a single sequential task. Execution
time estimation bounds the running time of a single-threaded code frag-
ment when running on a dedicated processor (i.e. in the absence of
multi-tasking). The problem of estimating execution times is composed
of two sub-problems: (1) identifying legal paths through the code, and
(2) determining the execution time of each path. Accurate estimation of
execution time bounds using analytical techniques is difficult for a num-
ber of reasons. First, in general, it is undecidable to determine all legal
paths through a program. Second, the execution time for legal paths
may be data dependent. Finally architectural features of modern CPUs,
such as caches and pipelining complicate the determination of accurate
execution time estimates due to global side effects. In practice, due to
the limitations of analytical techniques, one must rely on measurements
and extensive testing to accurately estimate execution time bounds.

3.2 Real-Time Scheduling

While analyzing execution times for an individual task is a necessary
building block, it is by no means sufficient. When multi-tasking is used,
we must also consider the scheduling of tasks on the CPU. The real-
time scheduling problem for a single processor consists of deciding the
order of execution of a set of tasks (concurrent threads) with certain
known characteristics (e.g., periodicity, and execution times).

The simplest approach to real-time scheduling is to construct a sched-
ule off line. At run-time, tasks are dispatched according to the pre-
constructed schedule. Static real-time scheduling is particularly applica-
ble when the majority of activities are based on periodic polling. A
cyclic schedule can be created for a set of periodic real-time tasks. The
traditional cyclic executive approach is a special case of such static
scheduling.

Static cyclic scheduling is inadequate when events may arrive aperiodi-
cally. While a polling approach may be used, it leads to very inefficient
CPU utilization. Instead, a run-time scheduling approach is used. The
most common run-time scheduling mechanism is a preemptive-priority
approach, in which tasks are dispatched at run-time according to their
priorities, and at all times the highest priority task gets to run.

An off line analysis (or simulation) must complement a run-time sched-
uling scheme to ensure that timeliness requirements will be met at run-
time. Schedulability analysis is used to determine whether a given sys-
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tem will meet its timeliness requirements at run-time. There is a well-
developed theory, based on preemptive priority scheduling and deter-
ministic analysis that can be used to predict worst-case response times
to events, given their maximum arrival rates, and maximum execution
times, and a priority assignment of tasks.

Synchronization between tasks complicates schedulability analysis.
When mutual exclusion is used between tasks, priority inversion can
occur, where a low priority task can block the execution of a higher pri-
ority task when they share a critical section. Worse still, this priority
inversion can be unbounded since an arbitrary number of intermediate
priority tasks can preempt the low priority task. Fortunately, a number
of priority inheritance protocols exist that allow us to bound priority
inversions, and apply schedulability analysis. The basic idea behind
these protocols is to bump up the priority of a low priority task when it
is in a critical section to prevent intermediate priority tasks from pre-
empting it.

More general forms of synchronization make the task of schedulability
analysis even harder, and in general impossible. However, simple prece-
dence synchronization is still analyzable using the deterministic analysis
approach. Precedence synchronization is used in synchronous
communication.

While schedulability analysis is now a mature technique, it is based on
several assumptions such as known worst-case execution times, simple
concurrency, synchronization, and communication models, etc. While a
variety of performance analysis techniques may be used when some of
these assumptions may not hold (e.g., model checking, stochastic per-
formance analysis, simulation), it remains a hard problem.

4. Design Paradigms
In this section we present two design paradigms that may be used to
develop real-time systems. We use the term design paradigm to repre-
sent a style of developing a real-time application and especially on how
concurrent activities are represented and modeled.

Ideally, a design paradigm should be supported by a standard set of
(preferably visual) notations, and formal semantics associated with such
notations. Formal semantics allow a design specification to be simu-
lated, analyzed for timeliness, as well as allow code generation to be
automated. None of this is feasible if we want the full generality avail-
able in standard programming languages. Instead, given the specific
demands of real-time systems, this generality is often sacrificed to get
the benefits of automated analyzability, formal semantics, and code
generation.

4.1 Time-Driven Style

This design style has evolved to model primary functional scenarios of a
real-time system, and to make these designs easily analyzable for timeli-
ness. As a result, it is based on a simple concurrency model. In this
model, a task is activated by an event trigger, and, upon arrival of the
event trigger, it performs some computation and then awaits the arrival
of the next event-trigger. The event trigger may be connected to an
external interrupt source, a periodic timer, signal from another task, etc.
Often timers are the main event sources (to ensure predictable work-
load), and hence we call it the time-driven style. The communication
between these tasks is based on the shared memory model through
shared protected data objects.

The tasking model is often extended to permit a message passing com-
munication between tasks, in addition to shared data. One way to
accomplish this is to make each task read input signals when it is trig-
gered, and produce output signals when it finishes execution. By
connecting the output signal of a task with the input signal of another
task, one may form directed task graphs based on producer-consumer
relationships. These producer-consumer relationships between tasks
impose ordering requirements on the execution of tasks, which may be
achieved by a variety of means. In such a model, external input signals
flow through a task graph before producing external output signals.

The time-driven style is naturally suitable for dealing with regular and

recurring input signals, where the processing of such signals may flow
through a number of processing steps (represented as tasks) before gen-
erating output signals. Digital signal processing and feedback control
loops are two examples that fit this design style. The main strength of
the time-driven style is that it maps directly to real-time scheduling
models and thus such designs are highly amenable to schedulability
analysis (and in some cases off line scheduling).

On the other hand, the tasking model is relatively simple and complex
task behaviors cannot be described. For example, aspects of control
(system initialization, mode changes, response to exceptions and fail-
ures, etc.) are not formally modeled, and hence not analyzable. The
event-driven style, described in the next section, explicitly models these
phenomena, and therefore making the designs more amenable to analy-
sis and simulation.

4.2 Event Driven Style with Object-Oriented Models

In contrast to the time-driven style, the event-driven software style has
evolved largely to deal with unpredictable asynchronous events. Thus,
event-driven software is structured around event-handling code. An
event triggers the appropriate event-handling code, and when the action
is complete, the software enters a dormant state awaiting the next event.
Since events may arrive while a previous event is being processed, the
software also allows for events to be queued for future processing. The
system must respond to asynchronous events in the external world, and
the reaction must depend on the system state. Thus, the software behav-
ior is often modeled as a finite state machine, where the arrival of an
event triggers transitions in the state machine, and includes the event-
handling code. An event-driven software system is often composed of a
set of concurrent and communicating finite state machines.

Event-driven software can be combined with object-orientation for large
complex systems. The active object concurrency abstraction is particu-
larly suitable for representing such finite state machines. The finite state
machine specification gives a behavioral specification of the active
object. Thus, a system is composed of a set of active objects communi-
cating with each other using message-passing mechanisms. Additional
structuring mechanisms such as hierarchical decomposition and layer-
ing may be used to build complex systems.

The biggest strength of this design style, in comparison with the time-
driven style, is that it has mechanisms to model complex system behav-
ior arising often from control aspects. This is manifested in a more
general behavioral specification of concurrent activities as manifested in
the active objects. On the other hand, this generality results in a less
clear understanding of the data-flows in a system, making it more diffi-
cult to perform schedulability analysis.

5. Real-time Technologies, Tools And Standards
An important ingredient of real-time software development is the neces-
sity of tools and technologies to support the development process. In
this section, we briefly look at some of the technologies, tools, and stan-
dards that are available to real-time developers.

5.1 Real-Time Operating Systems

While traditionally many real-time applications have been built without
using an operating system, the use of a real-time operating system to
better structure software is indispensable whenever an application man-
ages multiple concurrent activities and devices.

A real-time operating system provides the abstractions for concurrent
activities, and communication and synchronization mechanisms
between concurrent activities. This greatly simplifies the writing of real-
time software. Most real-time operating systems provided preemptive
priority based scheduling. The management of priorities for concurrent
activities to satisfy the timeliness requirements is left to the application.

Traditionally real-time operating systems have provided their own pro-
prietary API's. However, the emergence of the POSIX standard has
helped to standardize this with several OS vendors providing POSIX
API support, and especially those that relate to the real-time extensions.
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5.2 Design and Development Tools

Traditionally, design and development tools for real-time software have
not been very sophisticated. This is, again, in part due to the intrinsic
nature of real-time and embedded software. However, the industry is
finally beginning to invest in development tools, and this is a welcome
sign. For example, many vendors now provide an integrated develop-
ment environment with tools for editing, compiling, profiling,
monitoring, debugging, configuration management, etc. Many of these
tools are cross-hosted, i.e., the development tools run on host platform
(usually a Windows NT or Unix machine), but support communication
with the real-time software environment on the target machine.

Some tools go beyond providing a programming environment by sup-
porting model based real-time design. These, so called Computer-Aided
Software Engineering (CASE) tools provide the ability to develop soft-
ware using high-level models, and provide support throughout the
development life-cycle from requirements analysis to design to imple-
mentation. Most of such tools support the event-driven, object-oriented
software style, and there is some convergence towards using the newly
developed Unified Modeling Language, and standardized by Object
Management Group.

5.3 Performance Analysis Tools

Performance analysis tools help in the analysis of timeliness properties
of real-time software. Ideally, such tools should provide early assess-
ment of the feasibility of suitable designs based on estimates of run-time
costs, and then support the analysis through the design cycle to the
implementation, where real costs can be measured, and performance
analysis validated against the run-time behavior. Unfortunately, this is a
relatively weak area as far as tool development goes, although a few
tools have come out that support schedulability analysis and simulation
of models for timeliness properties.

6. The Future
In this paper we have looked at the problem of real-time software
design, concentrating on two key aspects namely timeliness and concur-
rency. We also presented two design styles and showed how the two
issues are addressed in them. Finally, we presented some of the technol-
ogies and the tools that are available to real-time software developers. 

It is encouraging to see real-time software design emerge from its
unduly conservative phase and finally adopting modern tools and tech-
niques. There are clearly many areas of improvement. Some of the
biggest deficiencies are in dealing with the timeliness requirements. For
example, performance analysis tools are relatively primitive, and not
integrated with the design and modeling environments. There is also a
conflict between more generalized models for design and the ability to
analyze them for timeliness. Many systems are soft real-time, and there
is a clear need for tools that support the design of adaptive real-time
systems whose performance degrades in predictable and controlled
manner in overload situations. 

Another area where we envision many challenges is in design heuris-
tics. In developing complex real-time software, a number of design
choices are available to the developer. In the absence of proper guide-
lines or heuristics, such design choices are made in ad-hoc manner, and
can easily lead to inefficient designs. The trend towards higher level
design abstractions and patterns that are closer to the problem domain
exacerbate this problem, since it leads to many more choices in moving
from the design abstractions to the implementation abstractions. For
example, in an object-oriented design style, choices must be made with
respect to how the design is mapped to operating system threads, how
are priorities assigned to threads, etc.

As society moves towards a symbiotic dependency on computer sys-
tems, more and more of these systems will fall in the broad category of
real-time systems. This means that the methods and techniques devel-
oped for traditional real-time software, including in particular
techniques for fault tolerance and predictability, will become part of the
standard knowledge base of most software engineers and developers.
Furthermore, they will be supported by increasingly more sophisticated

integrated suites of tools that will significantly increase the level of
automation of real-time software development.
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