
12 IEEE Canadian Review - Fall / Automne 2003

T
he need for an architectural neutral language that could be
used to produce code that would run on a variety of CPUs
under differing environments led to the emergence of the
Java programming language. With the rise of the World

Wide Web, Java has propelled to the forefront of computer language
design, because the web, too, demands portable programs. The environ-
mental change that prompted Java was the need for platform-
independent programs destined for distribution on the Internet. The Java
platform with its target platform neutrality, simplified object model,
strong notions of security and portability, as well as multithreading sup-
port, provides many advantages for a new generation of networked,
embedded and real-time systems. All those features would not have
been possible without appropriate hardware support. This book delves
in-depth into the various hardware requirements (with suitable case-
studies and examples) for realizing the advantages of Java.

Java’s portability is attained by compiling Java programs to Java byte-
codes (JBCs) and interpreting them on the platform-independent Java
Virtual Machine (JVM). Bytecode is a highly optimized set of instruc-
tions designed to be executed by the Java run-time system namely the
JVM. The first chapter presents a platform-independent dynamic analy-
sis of the JVM, including data related to bytecode instruction usage,
method frequencies and stack frame profiles. In order to test the tech-
nique, the SPEC JVM98 benchmark suite has been used, since this suite
does not allow the supply of source code to all the applications. This
type of analysis helps one to clarify the potential impact of the data
gained from static analysis, provide information on the scope and cover-
age of the test suite used and act as a basis for machine-dependent
studies. Based on the results tabulated in this chapter, one can gain
insights into the optimization work needed for improving the perfor-
mance of Java to bytecode compilers and for the design of the JVM.

As Java is being used on a variety of platforms, there is a growing
importance to study and optimize the memory behavior of programs
because of the various disparities between the processor and memory
speeds. Chapter 2 helps one understand the memory behavior of impor-
tant Java workloads used in benchmarking JVMs like SPEC JVM98 and
JIT compilers. With the help of the benchmark, characteristics like heap
accesses, data misses, object-field accesses including hot spots and
memory system interactions have been inspected. The analysis pre-
sented in this chapter provides important insights into understanding the
key sources of performance loss in Java programs. This chapter also
presents a set of recommendations to computer architects
and implementers of JVM components with structured
information about the Java workloads useful in formulat-
ing their designs and also techniques to run Java programs
more efficiently.

In embedded application, the architectural support is a
key factor for improving performance. The third chapter
describes a hardware architecture that provides an effi-
cient implementation of the JVM for embedded and real-
time systems. As the proposed architecture provides
direct support for the entire JVM instruction set and
thread model, it obviates the need for a Java interpreter or
JIT compiler as well as traditional RTOS. This chapter
looks into the aspects such as memory management, con-
currency, interrupts and concludes that the aJile
embedded Java microprocessor provides an efficient plat-
form for developing embedded applications in Java.

Java programs execute indirectly through a translation layer built into
the Java Virtual Machine (JVM). The translation process essentially
converts the bytecodes into corresponding machine-specific binary
instructions. The JVM has a stack architecture where operands are exe-
cuted one by one using the push-pop technique. Chapter 4 presents a

by: Purnendu Sinha, Nikhil Varma & Vasudevan Janarthanan,

Concordia University, Montreal, QC.

Java Microarchitectures

Book Review / Revue de livre

processor architecture for the hardware execution of the bytecodes and
resolves the issue of stack dependency by the use of a hardware byte-
code folding algorithm. The architecture provides a dual processing
capability of execution of bytecodes and native binaries. This chapter
discusses and analyzes the bytecode processing in various stages of the
instruction pipeline. It also presents a comparison between the hardware
translation approach and the other hardware approaches supporting Java
in hardware.

Using hardware support to assist the execution of bytecodes eliminates
the requirement of a software layer to emulate the bytecodes. A hard-
ware accelerator or coprocessor that works in conjunction with a
standard microprocessor can improve the execution of Java programs.
The fifth chapter introduces micro-architectural techniques to improve
the performance of Java applications executing on embedded Java pro-
cessors and general-purpose processors. The mechanism of using a fill
unit to store decoded bytecodes into a decoded bytecode cache improves
considerably the fetch and decode bandwidth of Java processors. A
Hardware Interpreter (Hard-Int) architecture is also proposed which
bridges the performance gap between the execution of Java applications
and natively compiled code by dynamically translating the bytecodes to
native language instructions.

Continuing along our discussion on the issue of design of architectures
for efficient execution of Java Virtual Machine (JVM) bytecode, Chap-
ter 6 describes the Delft-Java architecture and the mechanisms required
to dynamically translate JVM instructions into Delft-Java instructions.
This chapter also provides micro-architectural support for dynamic
translation, dynamic linking, multiple thread units, multiple instruction

issue, dependency collapsing and features applicable to
modern super-scalar processors. Through examples, this
chapter illustrates the effectiveness of Delft-Java architec-
ture in accelerating the Java program execution.

Since Java Virtual Machines (JVMs) rely on dynamic
compilation for performance, they suffer from large mem-
ory footprints and high startup costs, which are serious
problems for embedded devices. The seventh chapter pre-
sents a Quasi-static compilation framework that enables
efficient use of volatile storage while executing compiled
Java code on an embedded device. In this approach, the
pre-compiled binary images are reused and adapted to a
new execution context by using an indirection table to
hold relocated values, leaving the executable code unmod-
ified and able to be placed in ROM. This approach enables
the Java code to be stored in a shared location and be used
by different applications.

With hardware support for multithreading, virtual machines (VM) can
enhance performance, by exploiting thread-level concurrency, by exe-
cuting tasks such as garbage collection (GC) concurrently with program
execution. Chapter 8 discusses a Relational Profiling Architecture (RPA)

Book Edited by: Vijaykrishnan Narayanan, Mario I.Wolczko

Published by: Kluwer Academic Publishers

ISBN: 1-4020-7034-9

2002

Continued on page 16



16 IEEE Canadian Review - Fall / Automne 2003

10.0 Some Of The Key Success Factors In Project 
Portal Implementation
• Management embraces the Internet: Getting buy-in from man-

agement willing to commit resources is very important.
• Incremental implementation: Plan and invest for incremental

implementation of project portal development and use.
• Wired the infrastructure with sufficient bandwidth: To ensure

that it supports the intended uses of the project portal.
• Start Early: Project portal can help even early in the business

development cycle, e.g. Request For Proposal and before award.
• Up in a Day. Always Up to Date: Strive to bring up a basic project

portal in a day by setting a generic template. Not all features need to
be active immediately, but the framework can be operational very
quickly. Posting and linking of existing project data to date onto the
site as soon as they are available. Portal content evolves as the
project requires and it should be up to date.

• Self-Organizing: Provide guidance for a project participant to post
project in a logical place and link appropriately to related data [6].

11.0 How Does CoPs Relate To Project Portals
While project portals are for specific projects, they link to the Commu-
nity of Practice in Project Management. In a company, there will be
many project portals for the different projects. The Community of Prac-
tice in Project Management will provide the foundation and best
practices for projects that are facilitated by Project Portals. As the
project goes through the project life cycle to completion, lessons learned
and knowledge gained during implementation will be captured in the
project portal and can easily be transferred to the Community of Prac-
tice in Project Management.

12.0 Conclusion
Virtual Project Management utilizes Virtual Teams to implement the
projects. These virtual teams communicate through Project Portals with
Internet Technologies. The project teams also participates in Commu-
nity of Practice in Project Management by utilizing the best practices
and prior experience as well as providing value lesson learned for future
project implementation.

13.0 References
[1]. Hall, T. (1999). Intelligence Community Collaboration Baseline

Study: The Central Intelligence Agency's (CIA) Office of
Advanced Analytic Tools.

Kenneth Fung, B.Sc., CMA, CCP, MBA, ISP,
PMP, CSQE, is currently working as a Program
Director at the Faculty of Continuing Education
in University of Calgary. He has 10 years of
Information Technology experience as systems
analyst; project manager and QA team leader
and 10+ business experience in accounting and
finance. He has worked, implemented systems
and led cross functional teams in oil and gas,
medical claim processing, banking, high-tech, Information Tech-
nology, manufacturing and distribution industries in Calgary,
Winnipeg, Vancouver, Portland, Chicago, Atlanta, Austin, San
Francisco, Hong Kong and Beijing. He has developed and taught
project management courses at Mount Royal College, Motorola
and Cisco as well as conducted Business Process Reengineering
workshops, accounting and management courses. He is working
towards a Ph.D. in Information Systems. His research interests
include collaborative technologies and virtual teams.

About the author

[2]. Kimble, C., Li, F., Barlow, A. (2000). Effective Virtual Teams
Through Community Of Practice (Research 2000/9): Strathclyde
Business School.

[3]. Malhotra, A. M., Ann. Carman, Robert. (2001). Radical innova-
tion without collocation: a case study at Boeing-Rocketdyne. MIS
Quarterly, 25(2), 229 - 249.

[4]. Myers, K. N. (2000). The Project Portal. International Council on
Systems Engineering [Online]. Available: http://www.incose.org/
se-int/NetNotes/NetNotes005.html [16 Feb.2003].

[5]. Pohlmann, L. D. (2000a). Do We Need A Project Portal? Interna-
tional Council on Systems Engineering [Online]. Available: http://
www.incose.org/se-int/NetNotes/NetNotes003.html, 16 Feb.2003].

[6]. Pohlmann, L. D. (2000b). Electronic Systems Engineering (E-SE):
Exploiting Internet Technology - or - A Project Portal Primer.
Paper presented at the INCOSE 2000.

that can be augmented to the existing hardware supports to enable VMs
perform concurrent garbage collection. The proposed architecture helps
the GC system to have a short pause time and a low average run-time
overhead. This chapter also presents tabulated results of simulated times
for various phases of GC for various available benchmarks.

It has been noted that the Java language provides unique opportunities
to exploit parallelism by permitting architectures to execute single
threaded applications as multi-threaded applications. The ninth chapter
presents a technique called Space-Time Dimensional Computing (STC)
for the execution of speculative threads extracted at the method and
loop level from non-threaded Java programs. This chapter also provides
hardware support to efficiently implement STC without introducing
delays in critical paths for obtaining high frequency designs. Further-
more, this chapter describes an architecture named
MAJC, which has been designed to support the STC
technique.

In order to produce a single-chip multiprocessor and to
provide support for high performance Java based sys-
tems of the future, the Java Machine and Integrated
Circuit Architecture (JAMAICA) was designed. Chapter
10 discusses the design of Instruction Set Architecture
(ISA) of JAMAICA that has on-chip multiprocessor
structure targeted for multithreaded Java implementa-
tions. A selection of programs from the SPEC JVM98

benchmarks has been used to analyze the various ways in which byte-
code can be executed and the resulting overheads that occur. This
chapter also presents some optimization techniques to decrease the
method call overheads and compares the effects of proposed optimiza-
tions on static instruction count for selected SPEC JVM98 kernels.

The JAMAICA system is a combination of a multithreaded single-chip
multiprocessor and a dynamic thread distribution mechanism to provide
hardware support for fine-grained Java threads. The last chapter pro-
vides an overview of the threading mechanism and investigates the
granularity of parallelism that can be exploited in this way. This chap-
ter also confirms through experiments with two real Java applications
that the technique could be used in place of more traditional load bal-
ancing methods. The JAMAICA system considered in this chapter is a
Container Managed Persistence (CMP) processor where each processor
core is multithreaded keeping the processors always occupied.

In summary, this book provides a detailed analysis of
hardware support for Java. In particular, it introduces
the state-of-the-art in the area of design and develop-
ment of Java micro-architectures. The book presents
extensive simulation results covering different pro-
posed architectures that could benefit practicing
engineers and academic researchers alike in the design,
implementation and evaluation of newer architectures.
As Java-based technology is evolving, this book could
be a valuable tool in understanding the impact of Java's
features on micro-architectural resources.

Book Review: Continued from page 12

Java provides unique 
opportunities to exploit 
parallelism by permit-
ting architectures to 
execute single-threaded 
applications as multi-
threaded applications.


