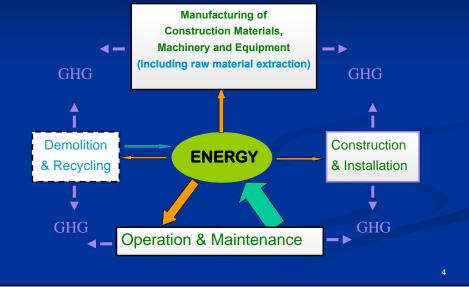
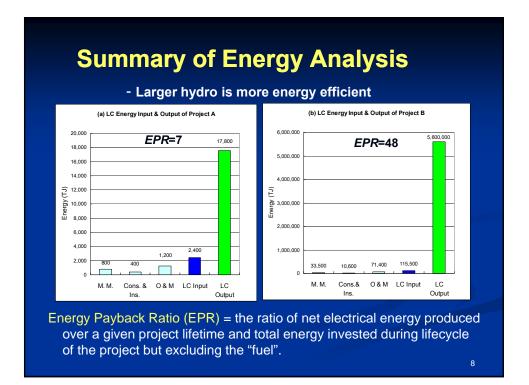

Is Large Hydro Sustainable?

- Life Cycle Inventory of Energy Use and GHG Emissions for Hydropower Projects


Katherine (Qinfen) Zhang Riverbank Power Corp.

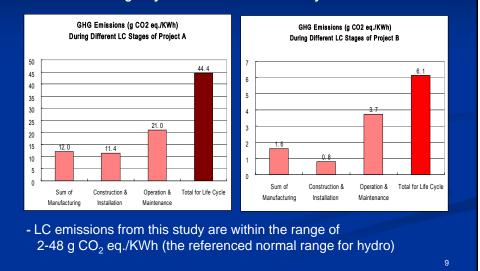
Prof. Karney and Prof. McLean University of Toronto

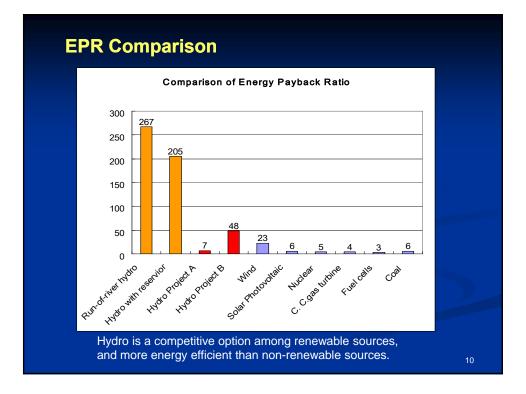
Technical & Economic Data	Project A	Project B	
Dam Type	Rock-fill Concrete	Double Arch Concrete	
Max H/ Max L/Dam V	88.8m/186m /740 km³	305m/569m/4360 km ²	
Reservoir Capacity	46.61 million m ³	7760 million m ³	
Flooded Land	0.44 km² (668 mu)	9.44 km² (14163 mu)	
Generation Capacity	22 MW*2 = 44 MW	600 MW*6 =3600 MW	
Avg. Energy Output	105.7 million KWh /yr	16620 million KWh /yr	
Design Lifespan	50 years	100 years	
Total Capital Investment	289.6 million RMB (1992)	18371.66 million RMB (2003)	

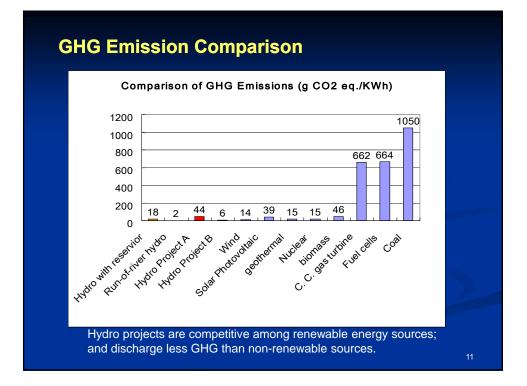


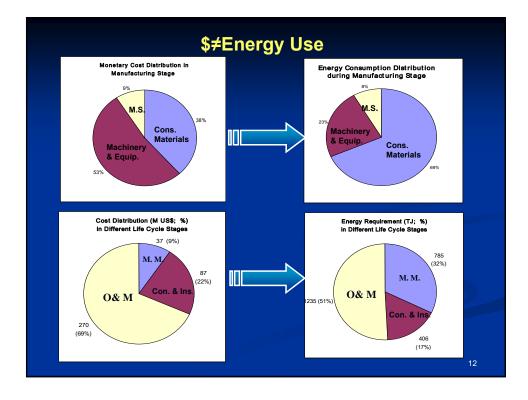
LCA Method and Application

- What's LCA?
- Process Chain Analysis (PCA)
- Economic Input-Output LCA (EIO-LCA) (Carnegie Mellon EIO based model)
- Data sources:
 - Manufacturing/Construction & Installation Stages: Project Engineering Budget Estimate Reports
 O&M Stage (including emissions from reservoir): Expertise & experience of similar projects
 - 3) Economic indices & other data: Literature & internet

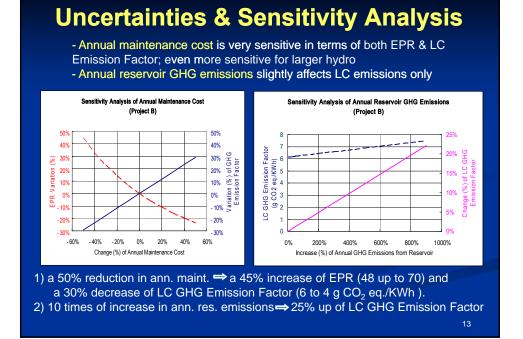


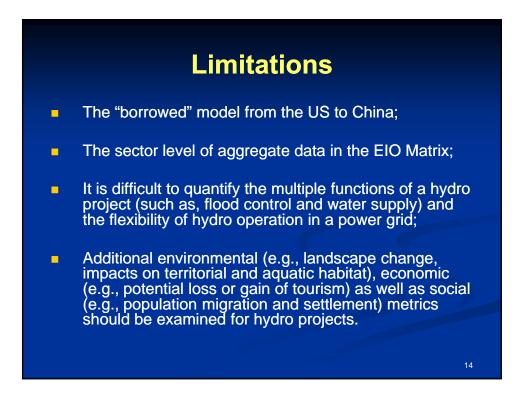





Life Cycle Inventory of GHG Emissions

- Larger hydro is more environmentally favorable





6

Conclusions & Comments

- A lifecycle perspective is needed for energy decision making. It is feasible to base a LCA for a hydro project on engineering budgetary estimates and this practice should become routine for feasibility study of hydro projects.
- An a priori assessment of project scale should not be used uncritically as a criterion for sustainability assessment because of inherent economies of scale.
- \$≠Energy Use
- Advanced technologies can influence the LCA of hydro projects. the optimization of structural design and application of new construction materials and technologies benefit the environment significantly by reducing construction impacts (e.g., the design of double arch dam in Project B significantly reduces the concrete volume, and thus improves the specific indicators of energy efficiency and GHG emissions).
- Sensitivity analysis shows that variations in annual maintenance costs significantly influence both LC energy efficiencies and GHG emissions, Thus, it is as important to improve the O&M efficiencies as to advance construction technologies.

Data Acquisition & LCI Steps

- Manufacturing Stage (including raw material extraction)
 - Quantities & prices of major construction materials
 - (steel, lumber, cement, sand, gravel, dynamite...)
 - Costs of equipment, devices used
 - * These data cited from Project Budget Estimate Report
- Construction & Installation Stage
 - Aggregate quantities & prices of gasoline & elec. used during con.
 - * These data cited from Project Budget Estimate Report
- Operation & Maintenance Stage (O & M)
 - Plant electricity use: 6% of annual electrical energy output
 - Annual maintenance/replacement cost: 2-3% of total investment
 - GHG emitted from reservoir: 250 tonnes CO₂ eq./(yr. km₂)
 - * These data estimated by expertise & experience of similar projects

Decommissioning Stage

* Not common for large hydro projects, no data referenced

Summary of Life Cycle Inventory of Project A

LC Stages	Cost (M RMB 92)	Cost (M US \$ 92)	Non- fossil Elec. Use (GWh)	Energy Use (TJ)	GHG Emissions (t CO ₂ eq.)	GHG Emission Factor (g CO ₂ eq./kWh)
Manufacturing	44.6	37.1	38.6	785.1	58652.0	12.02
Construction & Installation	106.6	88.7	5.8	406. 6	55655.6	11.40
Operation & Maintenance	324.5	270.5	359.0	1235.0	102431.5	20.98
Total	475.4	396.3	403.4	2426.6	216739.0	44.40

Power losses in transformer & transmission not included

All non-fossil electricity use is accounted approximately as hydroelectricity output reduction
GHG Emission Factor = GHG emission mass (g CO₂ eq.) / Lifetime net electricity output (KWh)

18

LC Stages	Cost (M RMB 2003)	Cost (M US \$ 1992)	Non- fossil Elec. Use (GWh)	Energy Use (TJ)	GHG Emissions (t CO ₂ eq.)	GHG Emission Factor (g CO ₂ eq./kWh)
Manufacturing	3938.4	1669.4	1863.8	33543.9	2504249.7	1.61
Construction & Installation	11562.1	4901.2	129.4	10643.9	1221745.8	0.78
Operation & Maintenance	36743.0	15575.0	102126.0	71379.0	5817173.0	3.73
Total	52243.5	22145.6	104119.2	115566.8	9543168.5	6.13

Summary of Life Cycle Inventory of Project B

Power losses in transformer & transmission not included

• All non-fossil electricity use is accounted approximately as hydroelectricity output reduction

• GHG Emission Factor = GHG emission mass (g CO₂ eq.) / Lifetime net electricity output (KWh)

19