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Abstract—A circuit model is proposed for studying the global
behavior of the normal form describing the Bogdanov-Takens
bifurcation, which is encountered in the study of autonomous
dynamical systems arising in different branches of science and
engineering. The circuit is easy-to-implement and one can exper-
imentally study the rich dynamics and bifurcations simply by
altering the values of some linear circuit elements (R, L, C) and
the e.m.f. of a d.c. voltage source. It is shown that the system
exhibits three local (saddle-node, Andronov-Hopf, spiral-to-node)
bifurcations and one global (Homoclinic) bifurcation. The phase
portraits associated with each of these bifurcations are presented,
which serve to illustrate the qualitative changes in the system’s
dynamics across a bifurcation curve. The implications of these
changes on the system’s stability are discussed.

Index Terms—Circuit modeling; bifurcation; Bogdanov-
Takens; nonlinear differential equations; dynamical system

I. INTRODUCTION

The theory of dynamical systems and bifurcations finds
wide usage in diverse fields of engineering and the natural
sciences. From Chua’s circuit to Lotka-Volterra models of
population biology, whenever a system is modelled by a
set of differential equations, the phenomena of bifurcation
is regarded as a powerful tool to investigate its dynamics
[1]–[12]. Knowing the location of a bifurcation point is of
great importance, because it marks the transition from one
regime of dynamics to another. Bifurcation can be classified as
either local or global. Bifurcations such as the saddle-node and
Hopf bifurcations are local because they can be detected by a
local analysis about an equilibrium point. On the other hand,
a bifurcation involving the collision between a steady-state
solution and a periodic solution (e.g., homoclinic bifurcation)
is global as it can cannot be identified by a local analysis
alone.

The Bogdanov-Takens (BT) bifurcation [13]–[15], which
involves the simultaneous ocurrence of both these classes, has
attracted increasing attention of the scientific community in
the past few decades [1], [4]–[9], [16]. It has been argued that
the dynamical behaviors of power-system models attempting
to explain voltage collapse can be best understood in terms
of Bogdanov-Takens bifurcation points and the associated
S̆il’nikov homoclinicity [1]. The BT bifurcation plays a major
role in the excitability of neurons in a 2-compartment neuronal
model [4]. It also arises in other diverse subjects such as
the indirect field oriented control of induction motor drives

[5], multimolecular biochemical reactions [6], predator-prey
systems in population biology [7], [8] and the study of weakly
coupled nonlinear oscillators [9].

In all of the above systems, the governing equations are
topologically equivalent to the normal form for the BT bifurca-
tion in the neighbourhood of a fixed point. The importance of
studying the global characteristics of the BT bifurcation curve
has also been stressed [16]. Despite this interest in the BT
bifurcation, a circuit model for studying the overall dynamics
of the BT normal form is lacking in the literature. Circuit
models are important mainly because they serve to illustrate
simply the salient features of a complex system and are easier
for mathematical and experimental study [10], [11].

Thus, keeping in mind the wide applicability and the intrin-
sic mathematical interest, I propose in this article a simple
electrical circuit model, which is governed by the normal
form of the BT bifurcation. Apart from illustration purposes,
this model should also provide quantitative details from ex-
perimental measurements about the Homoclinic bifurcation
curve, which cannot be derived by direct analytical methods.
The overall bifurcation diagram and the associated phase
portraits are also presented for illustrating the qualitatively
different dynamics the system exhibits in different zones of
the parameter space.

II. THE CIRCUIT MODEL

The Bogdanov-Takens bifurcation is a bifurcation of an
equilibrium point in a two-parameter family of autonomous
ordinary differential equations at which the critical equilibrium
has a zero eigenvalue of (algebraic) mulitplicity two [17], [18].
The normal form for the BT bifurcation is given by,

ẏ1 = y2 (1)
ẏ2 = β1 + β2y1 + y21 ± y1y2 (2)

where β1 and β2 are two independent parameters which can
take both positive and negative values. Here we choose the
‘−’ sign in the 2nd equation and propose the following circuit
realization (Fig. 1).

The boxed element in the circuit can be viewed as a
nonlinear resistor governed by v = ki2. This block can be
readily implemented using the squaring circuits available in
the literature [19], [20]. We have used two voltage-controlled



Fig. 1. Circuit model for the Bogdanov-Takens Bifurcation

current sources v1 and v2 whose magnitudes are given by,

v1 = ki2 (3)

v2 = L1
di

dt
+ S

1

C

∫ t

−∞
i(τ)dτ (4)

where S is the switch variable which takes values 0 and 1 for
closed and open positions respectively. The lower op-amp acts
as a non-inverting summer producing the output,

V = − 2
(
L2
dv2
dt

+ L3
dv1
dt

)
= − 2

(
L1L2

d2i

dt2
+ S

L2

C
i+ 2L3ki
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)
[using (3) and (4)]

Again, application of Kirchoff’s voltage law to the branch
carrying the current i yields,

V = −(e+R1i+ ki2)

Comparing these two equations, we get,

2
(
L1L2

d2i

dt2
+ S

L2

C
i+ 2L3ki

di

dt

)
= (e+R1i+ ki2) (5)

Dividing (5) by k and defining the ‘normalized’ time as, τ =
t/4L3, the equation can be simplified as,(L1L2

8kL2
3

) d2i
dτ2

=
e

k
+
R1 − S(2L2/C)

k
i+ i2 − i

di

dτ
(6)

Let us agree to choose the parameter values in such a way
that L1L2 = 8kL2

3. Then, we can define two phase variables,
y1 ≡ i and y2 ≡ di/dτ , in terms of which, the above equation
can be written as,

ẏ1 = y2 (7)

ẏ2 =
e

k
+
R1 − S(2L2/C)

k
y1 + y21 − y1y2 (8)

which is exactly identical to (1)-(2) with the minus sign in the
2nd equation. The parameters β1 and β2 are given by,

β1 =
e

k
, β2 =

R1 − S(2L2/C)

k
(9)

By changing the polarity and varying the e.m.f. of the voltage
source, the parameter β1 can be varied over both positive and
negative values. For positive values of β2, we may simply
close the switch S, which makes S = 0 and alter the resistance
value R1. However, if we want β2 to be negative, then we
must keep the switch open and change the ratio of L2 and C
instead.

III. PHASE PORTRAITS AND BIFURCATION

We proceed by discussing the nature of equilibrium points
of the system. At the equilibrium points (y∗1 , y

∗
2), both the time

derivatives in (1)-(2) vanish. Hence,

β1 + β2y
∗
1 + y∗21 = 0 (10)

y∗2 = 0 (11)

Equation (10) does not admit any real solution if β1 > β2
2/4.

Hence, no fixed points exist in this region of the parameter
space. On the other hand, if β1 < β2

2/4, there are two solutions
given by (y∗1 , y

∗
2) = (−β2/2±

√
β2
2/4 − β1, 0). If we linearize

the governing equations about these fixed points, we obtain the
Jacobian matrix as,

J =

(
0 1

β2 + 2y∗1 −y∗1

)
(12)

For the fixed point at (−β2/2 +
√
β2
2/4 − β1, 0), Det(J) =

−
√
β2
2 − 4β1 < 0. Consequently, this point is a saddle

[12]. On the other hand, for the fixed points (−β2/2 −√
β2
2/4 − β1, 0), Det(J) =

√
β2
2 − 4β1 > 0 and Tr(J) =

β2/2 +
√
β2
2/4 − β1. We see that, Tr(J) is negative only if

β2 < 0 and β1 > 0 and is positive otherwise. We know that
the trace of J is related to the stability of the fixed point.
Positive trace implies that the fixed point is unstable and vice-
versa. In addition, to determine whether the fixed point is a
spiral or a node, we need to evaluate the sign of the quantity
D = (Tr(J))2 − 4Det(J). In our case, D equals zero along
the curve denoted by L in Fig. 2.
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Fig. 2. Division of parameter space by the bifurcation curves

For points of the parameter space above this curve, D > 0
and the fixed point is a node, whereas below it, the point is



a spiral. Accordingly a spiral-to-node local bifurcation takes
place as one crosses this curve (Fig. 3).
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(a) β2 = 2: unstable spiral
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(b) β2 ≈ 3.957: unstable degenerate
node
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(c) β2 = 5: unstable node

Fig. 3. Spiral-to-node bifurcation for β1 = −2

Two other types of local bifurcations occur as one crosses
the curves SN and A. SN is a parabola given by β2

2 = 4β1. As
we traverse SN from left, the saddle and the node approach
each other, coalesce and then disappear, exhibiting the so-
called saddle-node bifurcation (Fig. 4).
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(b) β1 = 25/4: half-saddle half-node
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(c) β1 = 8: no fixed points

Fig. 4. Saddle-node bifurcation for β2 = 5

Fig. 5 shows the changes of dynamics one observes if one
crosses SN keeping β2 < 0. The key thing to notice is that
to the left of SN, there exists a stable fixed operating point
(stable spiral) whereas no such operating points exist on the
other side. This has alarming consequences in power-system
models, where voltage collapse can occur either when there is
no attracting bounded solution or the initial state lies outside
the basin of attraction of such a bounded state. Thus the
computation of saddle-node bifurcation curve is important, as
it defines the maximum possible region of safe operation [1].
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(b) β1 = 3.24: half-stable point
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Fig. 5. Loss of stable operating point as one crosses SN with β2 = −3.6

Another local bifurcation involving changes of system sta-
bility takes place if one crosses the β2 axis, keeping β2 < 0.
We had already noted that for β1 > 0, there exists a stable
spiral. If β1 is made negative, this spiral becomes unstable
and a stable limit cycle appears around it. Thus the system
undergoes a supercritical Andronov-Hopf bifurcation (Fig. 6).
Consequently, all the initial states belonging to the basin of
attraction of the stable spiral now gives rise to sustained oscil-
lations of the state variables around the limit cycle. In many
situations, oscillatory response is considered undesirable, and
therefore, Hopf bifurcation may be looked upon as having a
destabilising effect on the system’s dynamics [1].
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(a) β1 = 1: stable spiral
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(b) β1 = 0: very weak stable spiral
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(c) β1 = −1: unstable spiral sur-
rounded by a limit cycle

Fig. 6. Andronov-Hopf bifurcation for β2 = −3.6

All the bifurcations discussed so far are local bifurcations
which could be forecasted by linear stability analysis of the
equilibrium points. Apart from these, the system also exhibits
an important type of global bifurcation - the saddle homoclinic



bifurcation. As β1 is made more negative keeping β2 fixed
at some negative value, the stable limit cycle grows and the
period of oscillation increases. It eventually collides with the
saddle, forming a homoclinic orbit of infinite period, on the
curve H in Fig. 2. If β1 is made more negative, the limit cycle
disappears, leaving two unstable fixed points - an unstable
spiral and a saddle (Fig. 7).
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(a) β1 = −1.8: stable limit cycle and
saddle
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(b) β1 ≈ −2.107: homoclinic orbit
of infinite period
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Fig. 7. Saddle Homoclinic bifurcation for β2 = −3.6

These Homoclinic orbits often have profound effect on the
overall system stability [1] and a lot of work has been devoted
to studying the behaviour near these orbits [21]. The physical
variables such as currents and voltages executing sustained
oscillation along the limit cycle, change exceedingly slowly
as it approaches the homoclinic orbit. Then suddenly, as the
homoclinic orbit disappears, all these state variables increase
in an unbounded manner. Thus, the system suddenly changes
its nature from marginally stable to potentially unstable.

The bifurcation curves corresponding to this global bi-
furcation and all three types of local bifurcations discussed
previously, meet at the Bogdanov-Takens bifurcation point
(β1, β2) = (0, 0) (see Fig. 2). Accordingly, slight alterations of
parameters, such as the resistance R1 and voltage source e in
our circuit model, in the neighbourhood of this critical point,
lead to drastic qualitative changes in the system’s dynamics.
Fig. 2 shows the global bifurcation diagram for the system
studied.

IV. CONCLUDING REMARKS

In this paper, I have proposed a simple circuit model, which
is governed globally by the normal form of the Bogdanov-
Takens bifurcation. It is quite surprising that such a seemingly
simple circuit can exhibit a feature-rich dynamics with changes
of system parameters. Three types of local bifurcation and one
global bifurcation are observed, which can be summarized
by the overall bifurcation diagram in Fig. 2. The circuit
should be both useful for illustration purposes and amenable

to experimental study of the various aspects of BT bifurcation
arising in diverse contexts.
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