
Proceedings of National Student Paper and Circuit Design Contest - 2012

A New Approximation Algorithm for Project
Scheduling Problem

Bapita Roy
Department of Computer Application
Techno India College of Technology

Kolkata, India
bapitaroy14@gmail.com

Ramandeep Singh
Department of Computer Application
Techno India College of Technology

Kolkata, India
ramandeep.saini007@gmail.com

Neha Modi
Department of Computer Application

Future Institute of Engineering & Management
Kolkata, India

neha.m77@gmail.com

Suparna Konar
Department of Computer Application
Techno India College of Technology

Kolkata, India
suparna.konar7@gmail.com

Abstract— we have developed a project scheduling algorithm for
better estimation of project in an incomplete information
environment. It has been well approximated so that the
generalised NP-hardness get relaxed. A case study example has
been described for the claim of our scheme.

Keywords— project scheduling, approximated, NP-hardness

I. INTRODUCTION
 This approximation algorithm is one of the tools in theory
and practice of the project scheduling problem. We begin our
exposition with the Max-Cut problem i.e. the problem of
computing an edge cut with the maximum possible number of
edges in a given graph.
This approximation algorithm is implemented using the idea
of Max-Cut problem and gives impressive results in this area.

II. PROBLEM FORMULATION
We have identified the following project scheduling

problem as stated below:
Let us consider a network as a flow network in which a unit of

flow enters at the origin node1 and exits at the terminal node n. The
duration dij of an activity (i, j) in an AOA () network can then be
interpreted as the time to traverse the arc from node i to node j. The
intermediate node acts as transshipment centers. The task is to
determine a path from source to sink which takes the longest time to
traverse.

A. Semi Definite Problem Formulation & Relaxation
Let G = (N, E) be an undirected graph, which is the

network, ijw (i.e, dij) be weights of an edge (i,j) E.
 kN. Let  (k) denote {{i,j}:ik, jk} and w( (k))=

(,) ()
ij

i j k
w


 .

So we define SDP relaxation as

*

ii

1 1
(1)

C max
4

. . x 1 (i), 0

ij ij
n n

i j
w x

s t N x

 
  

  
     
 
 

  

B. Max Cut Problem Definition
Max Cut is the following computational problem.

We are given a graph G=(V,E) as the input , and we want to
find a partition of the vertex set into two subsets , S and its
compliment V\S, such that the number of edges going
between S and V\S is maximized.We define a cut in a graph
G= (V, E) as a pair (S, V\S), where SV. The edge set of the
cut (S, V\S) is

: (\) 1(,) { }\ e E e S e V SE S V S      ,

And the size of this cut is (,)\E S V S i.e., the number of
edges. We also say that the cut is induced by S. Garey et al. []
has proved the following regarding the Max Cut problem:

Theorem 1: The decision version of the Max Cut problem
is NP-complete.

The optimization version of the Max Cut problem is

consequently NP-hard.

C. SDP MAX CUT Problem Formulation
Let G = (N, E) be an undirected graph i.e, (network) where

N = {1 …n} Assume have edge-weights w = (ijw) ER .

(Which is dij), for kN, (k): = {i, j E: ik,jk}. So, the
MAX-CUT problem

, ()
max ij
k N i j k

w





This can be formulated as

Proceedings of National Student Paper and Circuit Design Contest - 2012

, 1

1

4

s.t. 1,1

max (1)

 { },

n

ij i j
i j

i i N

w x x

x


  



Here putting X xxT can be formulated as

, 1

1

4

1,1

max (1)

. . { },

n

ij ij
i j

ii i N

w x

s t x


  



D. GW Max Cut Problem Formulation
Let us consider a graph for approximating MAX CUT is

denoted as {1, ..., }(: ,)i i nG V E . Let a set of almost

optimal solution * * *
1 2, , . . . , nu u u of the vector program

(,)

1

1

2

. . , 1, 2,...,

T

i j

i j E

n
i

u u
Maximize

s t u S i n






 



That is a solution that satisfies

10 4

(,)

1

2

* *

() 5*10 () 5*10
i j E

Tu ui j SDP G Opt G 




   

E. Project Network Scheduling Problem formulated as
Geomanns-Willamson max Cut Problem

nDef : Almost Optimal Solution
In an approximation algorithm almost optimal solution is

just as good as truly optimal solution. Under this convention,
an optimal solution of a semi definite program or a vector
program is the solution i.e accurate enough in the given
context.

F. Semi Definite Relaxation for Max Cut Problem
We have formulated the Max Cut problem as a constraint

optimization problem. Let us consider the graph G= (V, E),
where v=1… n. Let the variables

1 2, , ..., { 1,1}nz z z   corresponding to any values from
{-1, 1} to this variables encodes a cut (S, V\S) , where

1{ : }iS i V z  . Then the edge eij is transformed into the

term
1

2

i jz z 
  

.

If eij is not a cut edge, then 1i jzz  and the value of the
above term is zero. If eij is a cut edge, then 1i jzz  and the
value of the above term is one. Therefore the Max Cut
problem can be formulated as

(,)

1

2 (1)

{ 1,1}, 1, ,

.........
. .

i j

i

i j E

i n

zz

z

Maximize

s t




  









As the Max Cut is NP-complete problem, we cannot
solve this optimization problem exactly in polynomial time.

Let us consider the optimal value is Opt (G). We replace each
real variable ui  1 : 1{ }n nR XS     , the (n-1)
dimensional unit sphere. So we get

(,)

1

1

2 (2)

, 1, 2, ,

.........

. .

T
i j

i

i j E

nS i n

Maximize

s t u

u u






 











This is called a vector program since the unknowns are
vectors.

The above consideration (2) gives a relaxation to
formulation (1) with relaxed set of solutions and it therefore
has value at least Opt (G).

To solve the formulation (1) , where the n variables zi
are elements of S° = {-1, 1} and thus determine a cut (S, V\S)
via : 1{ }iiS V z  , we have an almost optimal solution of
relaxed version of formulation (2) where n vector variables
are elements of 1nS  . Now we map 1nS  back to S° by

choosing p 1nS  by considering the mapping

1, 0
(3)

1,
.........

Tis p u

otherw ise
u






 



III. PROPOSED ALGORITHM

A. Schematic flow diagram of proposed scheme

Fig. 1 FSEARCH Function Flow Chart

Proceedings of National Student Paper and Circuit Design Contest - 2012

B. Proposed Scheme
START
INPUT NODES
INPUT EDGES
INPUT WEIGHTS

 FOR I = 1 TO NUMBER OF NODES
 FLAG=0
 FOR J=1 TO NUMBER OF NODES
 IF[(WEIGHT OF J)<(WEIGHT J+1)]
 THEN SWAP WEIGHT OF J AND WEIGHT OF J+1
 FLAG=1
 END IF
 END FOR
 IF FLAG=0 THEN BREAK
END FOR

INITIALISE [SUM AS ZERO]
FOR I =1 TO N
 INCREASE B
 EL= WEIGHT OF I
 P= FSEARCH(A,N.EL,B)
 IF P=1 THEN
 ADD WEIGHT OF I WITH EXISTING SUM
 BREAK
 ELSE
 ADD WEIGHT OF I WITH EXISTING SUM
 END IF

 DEFINING FSEARCH(A,N,EL,B)
 FOR I=1 TO N
 FOR J=1 TO N
 IF EL=A[I][J] THEN
 C[B]=I
 D[B]=J
 END IF
 END FOR
END FOR
IF B>1 THEN
 IF(C[B]=C[B-1] AND D[B] != D[B-1])

 THEN INCREASE COUNTER1
 END IF
 IF (C[B]!=C[B-1] AND D[B]=D[B-1])

THEN INCREASE COUNTER2
 END IF
 ELSE
 INCREASE COUNTER1 AND COUNTER2
 END IF
 IF B>1

THEN IF COUNTER1=COUNTER2 THEN
 RETURN -1
 ELSE RETURN 1
 END IF
 END IF
 SHOW THE SUM
 END

Fig. 2 the Algorithm

IV. CASE STUDY

PROBLEM:
Let us consider the following network information
related to a project. Estimate the project completion
time.

 Activity Immediate
Predecessor

 Time
(weeks)

A - 3
B - 6
C A 2
D B,C 5
E D 4
F E 3
G B,C 9
H F,G 3

 Using Critical Path Method (CPM)

 The PERT/CPM network:

 Calculate ES, LS, EF and LF for each activity:

Activity ES LS EF LF Slack Critical?
 A 0 1 3 4 1
 B 0 0 6 6 0 Yes
 C 3 4 5 6 1
 D 6 6 11 11 0 Yes
 E 11 11 15 15 0 Yes
 F 15 15 18 18 0 Yes
 G 6 9 15 18 3
 H 18 18 21 21 0 Yes

 The activities that make up the critical path:

Critical path activities: B -> D -> E -> F -> H = 21

Using proposed algorithm:

 Arranging the weight according to descending order:

 Activity Immediate
Predecessor

 Time
 (weeks)

G B,C 9
B - 6
D B,C 5
E D 4
A - 3
F E 3
H F,G 3
C A 2

 Solving using proposed algorithm

List 1 Weight List 2
3 9 6
3 6 1
3 5 4
5 4 4
2 3 1
5 3 6
7 3 6

Total weight:- 33 [i.e. > CPM (21)]
Therefore, our proposed algorithm gives us greater completion
time and with less time complexity.

V. CONCLUSIONS
We have worked on this problem of Project Management

Scheduling and proposed the algorithm to reduce the
complexity from O (n2) to O (n). We really hope that it will
replace the previous algorithms and will make its own stand.

Proceedings of National Student Paper and Circuit Design Contest - 2012

This is an ongoing project and we’re going to submit it as our
final year project.

VI. REFERENCES

[1] Goemans. M.X. Williamson. D.p: improved approximation algorithms for
max-cut and satisfiability problems using semidefinite programming. J .
Assoc. Comput. Mach. 42(6).1115-1145(1995).

[2] A report on approximate graph coloring by semidefinite programming.
 By Pingke Li, Zhe Liu.
[3] Garey, Michael R.; Johnson, David S. (1979), Computers and
Intractability: A Guide to the Theory of NP-Completeness, W.H.
Freeman, ISBN 0-7167-1045-5.
Maximum cut (decision version) ND16 in Appendix A2.2.

Maximum bipartite subgraph (decision version) is the problem GT25 in
Appendix A1.2.

