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Abstract— we have developed a project scheduling algorithm for 
better estimation of project in an incomplete information 
environment. It has been well approximated so that the 
generalised NP-hardness get relaxed. A case study example has 
been described for the claim of our scheme.  
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I. INTRODUCTION 
  This approximation algorithm is one of the tools in theory 
and practice of the project scheduling problem. We begin our 
exposition with the Max-Cut problem i.e. the problem of 
computing an edge cut with the maximum possible number of 
edges in a given graph. 
This approximation algorithm is implemented using the idea 
of Max-Cut problem and gives impressive results in this area. 

 

II. PROBLEM FORMULATION 
We have identified the following project scheduling 

problem as stated below: 
Let us consider a network as a flow network in which a unit of 

flow enters at the origin node1 and exits at the terminal node n. The 
duration dij of an activity (i, j) in an AOA () network can then be 
interpreted as the time to traverse the arc from node i to node j. The 
intermediate node acts as transshipment centers. The task is to 
determine a path from source to sink which takes the longest time to 
traverse. 

A. Semi Definite Problem Formulation & Relaxation  
Let G = (N, E) be an undirected graph, which is the 

network, ijw  (i.e, dij) be weights of an edge (i,j) E. 
 kN. Let  (k) denote {{i,j}:ik, jk} and w( (k))= 

( , ) ( )
ij

i j k
w


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So we define SDP relaxation as  
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B. Max Cut Problem Definition 
Max Cut is the following computational problem. 

We are given a graph G=(V,E) as the input , and we want to 
find a partition of the vertex set into two subsets , S and its 
compliment V\S, such that  the number of edges going 
between S and V\S is maximized.We define a cut in a graph 
G= (V, E) as a pair (S, V\S), where SV. The edge set of the 
cut (S, V\S) is  

: ( \ ) 1( , ) { }\ e E e S e V SE S V S       , 

And the size of this cut is ( , )\E S V S  i.e., the number of 
edges. We also say that the cut is induced by S. Garey et al. [ ] 
has proved the following regarding the Max Cut problem: 
 

Theorem 1: The decision version of the Max Cut problem 
is NP-complete. 

 
The optimization version of the Max Cut problem is 

consequently NP-hard. 

C. SDP MAX CUT Problem Formulation 
Let G = (N, E) be an undirected graph i.e, (network) where 

N = {1 …n} Assume have edge-weights w = ( ijw ) ER . 

(Which is dij), for kN, (k):  = {i, j E: ik,jk}. So, the 
MAX-CUT problem 

, ( )
max ij
k N i j k

w



  

This can be formulated as 
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Here putting X  xxT  can be formulated as 
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D. GW Max Cut Problem Formulation 
Let us consider a graph for approximating MAX CUT is 

denoted as {1, ..., }( : , )i i nG V E . Let a set of almost 

optimal solution * * *
1 2, , . . . , nu u u  of the vector program 
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That is a solution that satisfies 
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E. Project Network Scheduling Problem formulated as 
Geomanns-Willamson max Cut Problem 

nDef : Almost Optimal Solution 
In an approximation algorithm almost optimal solution is 

just as good as truly optimal solution. Under this convention, 
an optimal solution of a semi definite program or a vector 
program is the solution i.e accurate enough in the given 
context. 

F. Semi Definite Relaxation for Max Cut Problem 
We have formulated the Max Cut problem as a constraint 

optimization problem. Let us consider the graph G= (V, E), 
where v=1… n. Let the variables 

1 2, , ..., { 1,1}nz z z   corresponding to any values from 
{-1, 1} to this variables encodes a cut (S, V\S) , where 

1{ : }iS i V z  . Then the edge eij is transformed into the 

term 
1

2

i jz z 
  

. 

If eij is not a cut edge, then 1i jzz  and the value of the 
above term is zero. If eij is a cut edge, then 1i jzz  and the 
value of the above term is one. Therefore the Max Cut 
problem can be formulated as 
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As the Max Cut is NP-complete problem, we cannot 
solve this optimization problem exactly in polynomial time. 

Let us consider the optimal value is Opt (G). We replace each 
real variable ui  1 : 1{ }n nR XS     , the (n-1) 
dimensional unit sphere. So we get 
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This is called a vector program since the unknowns are 
vectors. 

The above consideration (2) gives a relaxation to 
formulation (1) with relaxed set of solutions and it therefore 
has value at least Opt (G). 

To solve the formulation (1) , where the n variables zi 
are elements of S° = {-1, 1} and thus determine a cut  (S, V\S) 
via : 1{ }iiS V z  , we have an almost optimal solution of 
relaxed version of formulation (2) where n vector variables 
are elements of 1nS   . Now we map 1nS   back to S° by 

choosing p 1nS  by considering the mapping  

1, 0
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III. PROPOSED ALGORITHM 

A. Schematic flow diagram of proposed scheme 

 

Fig. 1  FSEARCH  Function Flow Chart 
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B. Proposed Scheme 
START 
INPUT NODES 
INPUT EDGES 
INPUT WEIGHTS 

 
 FOR I = 1 TO NUMBER OF NODES 
             FLAG=0 
             FOR J=1 TO NUMBER OF NODES 
                     IF[ (WEIGHT OF J)<(WEIGHT J+1 )] 
                            THEN     SWAP WEIGHT OF J AND WEIGHT OF J+1 
                           FLAG=1 
                      END IF 
             END FOR 
                        IF FLAG=0 THEN BREAK 
END FOR 

 
INITIALISE  [SUM  AS  ZERO] 
FOR I =1 TO N 
               INCREASE B 
               EL= WEIGHT OF I 
               P= FSEARCH(A,N.EL,B) 
               IF P=1 THEN  
                 ADD WEIGHT OF I WITH EXISTING SUM 
                BREAK 
                ELSE 
                 ADD WEIGHT OF I WITH EXISTING SUM 
             END IF 

              
 DEFINING FSEARCH(A,N,EL,B) 
 FOR I=1 TO N 
             FOR J=1 TO N 
                IF EL=A[I][J] THEN 
                    C[B]=I 
                    D[B]=J 
                 END IF 
           END FOR 
END FOR 
IF B>1 THEN 
           IF( C[B]=C[B-1] AND D[B] != D[B-1]) 

 THEN    INCREASE COUNTER1 
            END IF 
            IF (C[B]!=C[B-1] AND D[B]=D[B-1] ) 

THEN    INCREASE COUNTER2 
            END IF 
           ELSE 
                       INCREASE COUNTER1 AND COUNTER2 
          END IF 
         IF B>1  

THEN   IF COUNTER1=COUNTER2 THEN  
         RETURN -1 
        ELSE RETURN 1 
        END IF 
        END IF 
  SHOW THE SUM 
 END 

Fig. 2 the Algorithm  

IV. CASE STUDY 

PROBLEM: 
Let us consider the following network information 
related to a project. Estimate the project completion  
time. 
 

   Activity Immediate 
Predecessor 

  Time 
(weeks) 

A - 3 
B - 6 
C A 2 
D B,C 5 
E D 4 
F E 3 
G B,C 9 
H F,G 3 

 
 Using Critical Path Method (CPM) 
 
 

 The PERT/CPM network: 

 
 
 

 Calculate ES, LS, EF and LF for each activity: 

Activity     ES  LS EF LF Slack Critical?  
     A    0 1 3 4 1  
     B    0 0 6 6 0 Yes 
     C 3 4 5 6 1 
     D 6 6 11 11 0 Yes 
     E 11 11 15 15 0 Yes 
     F 15 15 18 18 0 Yes 
     G 6 9 15 18 3  
     H 18 18 21 21 0 Yes 
 

 The activities that make up the critical path: 

Critical path activities:  B -> D -> E -> F -> H = 21 
 

Using proposed algorithm: 
 

 Arranging the weight according to descending order:  

      Activity Immediate 
Predecessor 

         Time 
       (weeks) 

G B,C 9 
B - 6 
D B,C 5 
E D 4 
A - 3 
F E 3 
H F,G 3 
C A 2 

 
 

 Solving using proposed algorithm 
 
List 1              Weight              List 2 
3  9  6 
3  6  1 
3  5  4   
5  4  4 
2  3  1  
5  3  6   
7  3  6 

 
Total weight:- 33 [i.e. > CPM (21)] 
Therefore, our proposed algorithm gives us greater completion 
time and with less time complexity. 

V. CONCLUSIONS 
We have worked on this problem of Project Management 

Scheduling and proposed the algorithm to reduce the 
complexity from O (n2) to O (n). We really hope that it will 
replace the previous algorithms and will make its own stand. 
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This is an ongoing project and we’re going to submit it as our 
final year project. 
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