Univ. Santo Tomás Bogotá, 12 Mayo 2010

> Sensores Nanomecánicos basados en tecnologías MEMS

Prof. Laura M. Lechuga

Grupo de Nanobiosensores y Nanobiofísica molecular Centro de Investigación en Nanociencia y Nanotecnología **(CIN2-CSIC)** CIBER Bioingenieria, Biomateriales y Nanomedicina **(CIBER-BBN)** Barcelona

Resonant frecuency principle (DINAMIC MODE)

•The resonant properties depend on the cantilever mass, environment viscosity and surface stress. In liquid, Resonant frequency shifts to a lower frequency (increase of the effective mass).

 $\bullet The sensitivity is proportional to the Quality factor (Q), wich is very low in fluid, in which biomolecular recognition takes place$

Length x width x thickness	k	frequency	Q
[µm]	(N/m)	[kHz]	
200 x 20 x 1.5	2.5x10 ⁻²	17.0	15.0
200 x 50 x 1.7	6.4x10 ⁻²	15.0	12.8
100 x 20 x 1.6	2.9x10 ⁻¹	41.0	15.6
Material properties $\Delta z \cong \frac{3(1-\nu)L^2}{Et^2} (\Delta \sigma_1 - \Delta \sigma_2)$ thickness	air	Hz Bigger	= 3.53 kHz = 1.64

Sensores nanomecánicos/MEMS/NEMS						
	MEMS 🖿	NEMS	1. Nanopalanca			
Detección de masa:	pico-nano gramo	femto-atto gramo	Vaccinia Virus Particles			
Frecuencia de resonancia:	10-100 kHz	100 MHz -1 GHz	<u>1µm</u>			
Área sensora:	1000 μm²	< 1 µm²	Un sólo virus 2. Nano fluidica			
Límite de detección:	10 ⁷ moléculas	Moléculas y patógenos individuales				
	-		300 nm Reducir tiempo de respuesta			

Conclusions	CIN2
Biosensors devices are a powerful technology allowing label-free, time measurements	fast and real-
The biological receptor layer is one of the crucial issues for makin field operation	g devices for
 Nanomechanical biosensors is a emerging technology that allows Rapid detection of proteins, DNA and cells It does not require labelling with fluorescent or radioactive molecule The small sensor area allows analysis of minute amounts of sample Arrays of microcantilevers can be fabricated with microelectronics to mass production and low cost 	S: s ∋ (femtogram) echnology:
The ideal situation is the development of a "lab-on-a-chip" microsy integration of sources, sensors, detectors, flow system, CMOS ele data processing on a compact device	stem through ectronics and
Biosensing is a highly <u>multidisciplinary research area</u> ranging f chemistry, molecular biology, engineering,	rom physics,

