Chameleon: A Dual-Mode Bluetooth/WiFi Receiver Design

IEEE CAS Society Chapter at Dallas, Texas

Ahmed Emira, Alberto Valdes-Garcia, Bo Xia, Ahmed Mohieldin, Ari Valero-Lopez, Sung Tae Moon and Chunyu Xin. Faculty Advisor: Dr. Edgar Sánchez-Sinencio

> Analog & Mixed-Signal Center (AMSC) Texas A&M University

Outline

- Previous work: Bluetooth Receiver in CMOS 0.35µm
- System Level Design
 - Technology features
 - Main Bluetooth and Wi-Fi specs
 - Previously reported architectures
 - Proposed dual-mode architecture
 - Impact of non-idealities on the BER performance
- Building Blocks
 - LNA
 - Mixer
 - VCO and PLL
 - VGA
 - ADC
- Experimental Results

0.35µm CMOS Bluetooth Low-IF Receiver IC

Developed during 2001 and 2002 at the AMSC.

Authors: Wenjun Sheng, Bo Xia, Ahmed Emira, Chunyu Xin, Ari Ari Valero-Lopez, Sung Tae Moon and Edgar Sanchez-Sinencio.

0.35µm CMOS Bluetooth Low-IF Receiver IC

- Publications:
 - 2002 RFIC Conference, Best Student Paper Award (third place).
 - Journal of Solid-State Circuits: January 2003 (Receiver) and August 2003 (Demodulator).
 - Transactions on Circuits and Systems II: November 2003 (Complex Filter).

Chameleon Receiver: Timeline

Phase	2002			2003		
FildSe	Spring	Summer	Fall	Spring	Summer	Fall
802.11b/Bluetooth standards study						
Dual-mode architectures survey						
Baseband BER simulations						
Rx System Specifications						
Building Block Specifications						
Circuit Level Design						
Layout and Chip Submission						
PCB Design for Block and System Testing						
Block and System Testing						
Paper Submission to ISSCC						

Chameleon Receiver

- Previous work: Bluetooth Receiver in CMOS 0.35µm
- System Level Design
 - Technology features
 - Main Bluetooth and Wi-Fi specs
 - Previously reported architectures
 - Proposed dual-mode architecture
 - Impact of non-idealities on the BER performance
- Building Blocks
 - LNA
 - Mixer
 - VCO and PLL
 - VGA
 - ADC
- Experimental Results

Technology features

- IBM SiGe BiCMOS 6HP 0.25um
- Transit frequency (f_T) 47GHz
- 6 aluminum metal layers
- Analog metal (4um thick, 0.00725 Ω/\Box)
- Varactor diode (intrinsic base-collector diode)
- Metal to metal cap (1.4fF/um²)
- MOS cap (3.1±15%fF/um²)
- Poly resistors (210±20%, 3600±25% ♫)

Standards Overview

	Bluetooth	802.11b		
Data rate	1Mb/s	1-11Mb/s		
Power	Lower	Higher		
Modulation	FH-GFSK	DSSS-CCK		
Freq band	2.4 – 2.48GHz	2.4 – 2.48GHz		

Dual-Mode Receiver Architecture

 3 possible alternatives for Bluetooth and Wi-Fi dual mode architectures:

Previously Reported Dual-Mode Receivers

- DCR for WiFi, low-IF for Bluetooth.
- Shared RF front-end.
- Separate baseband circuits

[1] J. C. H. Darabi, et al "A Dual Mode 802.11b/Bluetooth Radio in 0.35mm CMOS," ISSCC 2003, San Francisco, CA.

Previously Reported Dual-Mode Receivers

- Double downconversion to avoid LO self mixing and injection locking between PA and VCO.
- DCR for Wi-Fi and low-IF for Bluetooth.
- Shared RF and programmable dual-mode baseband.

[2] D. K. T. Cho, et al "A 2.4Ghz Dual-Mode 0.18mm CMOS Transceiver for Bluetooth and 802.11b," ISSCC 2003, San Francisco, CA.

Proposed Dual-Mode Architecture

Direct-conversion **BT/WiFi** receiver architecture

Remarks

- Direct-conversion architecture is used for both standards to save power and avoid the image problem in IF architectures.
- LNA & Mixer are shared between BT and Wi-Fi.
- Gm-C LPF with programmable bandwidth is used to accommodate both standards.
- Parallel Pipeline ADC architecture is used:
 - BT: sampling rate = 11MHz, 11bits
 - Wi-Fi: sampling rate 44MHz, 8bits
- Due to the short allowed settling time, the VGA has only two gain steps in BT mode and the signal level at the ADC input will vary by 24dB.
- In Wi-Fi mode, gain steps of 2dB are employed.

Impact of DC offset and DC offset correction on the BER performance (Wi-Fi mode)

A: 0 offset. **B:** 5% offset, **C:** 10% offset, **D:** 15% offset **E:** offset cancelled with 4 HP poles at 5KHz, **F:** offset cancelled with 4 HP poles at 10KHz.

Wi-Fi Interferer Rejection Requirements

- In the presence of a modulated interferer at 25MHz with a power 35dB above the signal of interest, the receiver should show 1E-5 BER for an SNR 6dB above the minimum sensitivity.
- The channel selection filter should reject an strong interferer while not affecting the spectrum of interest.

Impact of the channel selection filter characteristics on the BER performance (Wi-Fi mode)

- 5th order Butterworth filter with f_C=5.5MHz with (B) and without an interferer (A).
- 4^{th} Chebyshev filter with $f_c=6MHz$ with (D) and without an interferer (C).

Impact of the mismatch between I and Q channels on the BER performance (Wi-Fi mode)

- A: Receiver performance including channel selection filter and DC offset correction.
- B: Performance with a 10^o error in the generation of I and Q signals.
- C: Performance with 1.5dB gain mismatch between I and Q channels in addition to the phase error.

Adjacent Channel Test

NF, IIP3, and IIP2 contributions

Power consumption and area contributions

Chameleon Receiver

- Previous work: Bluetooth Receiver in CMOS 0.35µm
- System Level Design
 - Technology features
 - Main Bluetooth and Wi-Fi specs
 - Previously reported architectures
 - Proposed dual-mode architecture
 - Impact of non-idealities on the BER performance

Building Blocks

- LNA
- Mixer
- VCO and PLL
- VGA
- ADC
- Experimental Results

Low Noise Amplifier

- Gain = 15/-15dB
- NMOS drive is used for better linearity.
- C_m ensures matching in lowgain mode.

I/Q Downconversion Mixer

- I & Q share the same RF drive stage
- NMOS drive for better linearity
- NPN switch to reduce LO drive and 1/f noise

Frequency Synthesizer

- VCO running at 2f_o
- I/Q generation using divide-by-2 flip flop.
- Capacitor multiplier to integrate loop filter cap.

Phase Switching Prescaler

- Phase switching prescaler for reduced power consumption compared with traditional architectures.
- No feedback in flip-flops.

Charge Pump

Cascode current mirrors minimize the current mismatch in Up and Dwn operation.

Capacitance Multiplier

$$z_{in} = \frac{z_0}{M+1}$$

Total Current: 150 μA

VCO

- LC tuned negative-g_m VCO
- Analog metal inductor
- Varactor diode
- DC-decoupling for driver base to improve linearity and noise
- Bypass capacitor improves phase noise 2dB
- L=1.5nH, Q=13

Channel Selection Filter

- 5th order Butterworth OTA-C filter.
- Passive 1st pole is used to relax the biquad (OTA) linearity requirements.
- Programmable bandwidth through switching R&C.

Biquadratic Section

Direct connection between consecutive OTAs in the filter is exploited in the implementation of the CMFB circuit.

30

Dual-mode OTA

- The standard is chosen by switching R (coarse tuning)
- Fine frequency tuning using bank of capacitors C ³¹

Constant output offset VGA

V

The gain is controlled by d:

$$Gain = \frac{G_{11} + dG_{12}}{G_2}$$

• The output offset is independent of d.

$$output offset = \frac{G_{11} + G_{12}}{G_2} V_{os}$$

- This assumes that the offset in Vi is completely removed by the RC HPF.
- Problem: G_{11} and G_{12} will load the HPF \Rightarrow we have to use a buffer at each input resistor

 G_2

Vos

 V_i

Constant output offset VGA, Cont'd

- A buffer is used to drive each input resistor.
- The feedback factor is independent of the gain.
 This makes the OpAmp design easier.

- Bandwidth and phase margin are independent of the gain.
- Note that the capacitor C does not load the previous stage since it is in series.
- However, the parasitic capacitance of the top and bottom plates to ground will load the previous stage!

Time-Interleaved Pipeline ADC

- Programmable resolution and sampling rate.
- On line digital calibration.

Chameleon Receiver

- Previous work: Bluetooth Receiver in CMOS 0.35µm
- System Level Design
 - Technology features
 - Main Bluetooth and Wi-Fi specs
 - Previously reported architectures
 - Proposed dual-mode architecture
 - Impact of non-idealities on the BER performance
- Building Blocks
 - LNA
 - Mixer
 - VCO and PLL
 - VGA
 - ADC

Experimental Results

Receiver Die Photo

Testing Board

38

Receiver Sensitivity

Bluetooth = -91dBm Wi-Fi (11Mb/s) = -86.5dBm

Receiver Linearity

Both **BT** / Wi-Fi modes

IIP2 = 10dBm

LO Phase Noise

-124 dBc/Hz @ 3MHz

LPF Programmability

SNR Measurement for ADC

BT

Wi-Fi

64.2 dB at 11MSample/s for the 550 kHz BT signal 59.7 dB at 44MSample/s for the 5.5 MHz 802.11b signal 43

Comparison Table

	[1]			[2]	This design		
	ВТ	WiFi	ВТ	WiFi	BT	Wi-Fi	
Receiver Architecture	Low-IF	DCR	Low-IF	DCR	DCR	DCR	
Offset cancellation	Program	mable loop	Injection at AGC input		AC coupling		
Channel select filter	sep	parate	programmable		Programmable		
Baseband amplifier	sep	parate	shared		Shared		
ADC	Not ir	ncluded	Not included		Included		
Filter bandwidth	1MHz (BPF)	7.5MHz (LPF)	1MHz (BPF)	7.5MHz (LPF)	600kHz (LPF)	6MHz (LPF)	
Sensitivity	-82dbm	-88dBm	-80dBm	-92dBm (0dB SNR)	-91dBm	-86dBm	
Technology	0.35 μι	m CMOS	0.18 μm CMOS		0.25μm BiCMOS		
Rx active current	46mA	65mA	60mA		27.9mA (w/o ADC)	30mA (w/o ADC)	
ADC active current	-	-	-	-	13.4mA	15.6mA	
IIP3	-7dBm	-8dBm	-12dBm		-13dBm		
IIP2	N/A	N/A	20dBm		10dBm		
Rx area (w/ pads)	1	N/A	16mm ² (transceiver)		9mm ² (w/o ADC)		
ADC area (w/ pads)	-	-	-	-	10mm ²		
Supply voltage	2	.7V		1.8V	2.5V		

Summary

- Direct conversion architecture for BT / Wi allows maximum level of block sharing
- Lower consumption than previous dualimplementations (27.9 mA / 30mA)
- Shared RF front-end and programmable baseband components
- Programmable channel selection filter with constant linearity
- AC coupled VGA with constant output offset
- On-chip time interleaved pipeline ADC