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Outline

• RF frequency synthesis fundamentals
– Motivation for digitally-intensive PLL

• New paradigm in nanometer-scale CMOS
• All-digital phase-locked loop (ADPLL)
• ADPLL wideband frequency modulation
• Conclusion
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Frequency Synthesis in Radio 
Transceivers
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• Local oscillator (LO) is needed in every radio TX and RX
– Irrespective of the architecture

• Needed to translate RF frequency down to IF or baseband 
(in RX) and vice versa (in TX)

• LO has to be tunable across the RF wanted frequency band 
and the frequency resolution has to be at least equal to the 
channel spacing

• Frequency synthesizer is used as LO
• RF frequency synthesizers remain one of the most 

challenging blocks in mobile wireless communication 
systems

Local Oscillator in a Radio Transceiver
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Local Oscillator

• Frequency reference (FREF) source usually built as tunable 
crystal oscillator (XO)
– Voltage-controlled temperature-compensated XO (VCTCXO)

• External module; expensive (~$1)
– Digitally-controlled XO (DCXO)

• Requires external XTAL (~$0.2)
– MEMS resonators

• Emerging technology
• Three major frequency synthesis techniques:

– Direct-analog (error correction process is avoided)
– Direct-digital
– Indirect or phase-locked loop
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Phase Noise in Oscillators
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• Ideal oscillator: power concentrated at ωc
– Dirac pulse in frequency domain

• Real oscillator: phase is time-varying
– Spectrum will exhibit “skirt” around the carrier frequency

Single side 
band noise
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Phase Noise Profile
• 1/ω0: thermal noise added to the clock outside of the oscillator 

proper; does not affect the oscillation time base
• 1/ω2: upconverted thermal (AWGN) noise; caused by 

uncorrelated timing fluctuations in the period of oscillation; 
modeled as random walk

• 1/ω3: upconverted flicker (1/f) noise; significant in thin-oxide 
MOS transistors

• RF oscillator 
phase noise 
spectrum exhibits 
three regions
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• Periodic (systematic) content in the phase noise will exhibit 
itself as undesired spurious tone sidelobes upconverted 
around the carrier

Phase noise 
spectrum

Voltage 
spectrum
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LO in Transmitter

Tail phase noise of 
the TX might corrupt 
weak detected 
signal from other TX

Interferer
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LO in Receiver

Interferer

Wanted
Signal

Interferer LO

c

IF

skirt

Signal due to 
conversion of the 

interferer

IF

noise

Signal due to 
conversion of the 

wanted signal
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Synchronization of a Mobile Station
• LO needs to be accurate and stable to 0.1 ppm

– i.e., 200 Hz at 2 GHz
• Crystal’s inaccuracy more than 10 ppm
• Mobile station uses base station for synchronization

– Automatic frequency control (AFC)
• => Reference frequency typically needs to be tunable
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• Phase noise performance
• Discrete spurious noise performance
• Switching speed – for channel hopping, sleep modes
• Frequency and tuning range – operational band plus PVT 

margin
• Power consumption – battery operated mobile devices
• Size – mass production deployment
• Integrateability – integrate with digital logic and memory
• Cost – no extra cost added to the process; minimal count of 

external components
• Testability  – low testing costs; built-in self test (BIST)
• Portability – ability to transfer the design from one application 

to another and from one process to another

Frequency Synthesizer Ranking
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Frequency Synthesis Types
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Direct Digital Synthesis (DDS)

ROM DAC LPF

t t t t

Frequency 
Control 
Word
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Phase 
Accumulator

output

time-sampled
phase

time-sampled
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time-continuous
amplitude

Frequency 
Reference 

Clock
(FREF)

• Digitally constructs the desired 
signal
– Amplitude, frequency and phase 

are known and controlled at all 
times

• Not entirely digital
– Requires DAC and LPF

• Not feasible at GHz frequencies
– Clock has to be at least 3x of the 

output frequency

• Developed by Tierney 
[1] in 1970s

PhaseFCW

Phase 
Accumulator

FCW(data)

FCW(channel)

FREF
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Indirect Synthesis: Charge-pump PLL
• Phase difference estimated in PFD by measuring time difference between 

fref and fdiv closest edges, hence fundamentally slow acquisition
• Frequency acquisition time is proportional to the initial Δf / fBW

• Disadvantage: slow acquisition and difficult to integrate
– Difficult to integrate: VCO and large charge-pump caps

• Conflict in frequency switching time and suppression of spurs
• Only suitable for narrowband transmit modulation

• PFD produces 
current pulse Ip with 
prop. duty cycle

• Loop filter converts 
the current into a 
VCO tuning voltage

• C2 is an integrating 
capacitor and puts a 
pole at dc

PFD

Phase/Frequency 
Detector

VCO

Voltage-controlled
Oscillator

Tuning  
voltage

Frequency Divider

UP

DOWN

Charge Pump

C2

C1

R1

Loop 
Filter FVCOFREF IP

FDIV

INref

(fdiv)

vco
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Fractional-N Synthesizer

Spur reduction techniques:
• Analog compensation 

schemes – phase 
interpolation

• Sigma-Delta modulator

• Frequency tones 
(spurs) due to 
repetitive phase shift

• Easy to predict in a 
digital manner --
accumulator

Kingsford-Smith
US patent 3,928,813
1974 (filing date)
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Sigma-Delta Fractional-N Divider
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ΣΔ modulator shapes the quantization error 
energy into higher frequencies which are 
then easy to filter out

Riley
US patent 4,965,531
1989 (filing date)

Wells
US patent 4,609,881
1984 (filing date)
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Hybrid of DDS and PLL
• DDS combined with PLL
• DDS operates at lower frequency: wideband modulation and 

fast channel hopping capability
• PLL used as frequency multiplier to up-convert the DDS 

output to RF band
• Used in basestations

– Fast settling time

clk

DDS RF
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Motivation for (All?)-Digital PLL
• Frequency synthesizers in commercial wireless applications 

traditionally use charge-pump PLL’s
• No prior reports on successful low-cost synthesizer 

architectures for mass-market mobile communications 
employing all-digital approach

• Design flow and circuit techniques are analog intensive

ref

div

vco

• Technology 
incompatible with 
modern digital 
baseband 
processors
– Use low-voltage 

nanoscale CMOS



R. Bogdan Staszewski, DCAS Seminar, 21 Feb 2007 20

Phase Domain Operation
• Charge-pump PLL does not truly operate in the 

phase domain: only approximation under lock
– [2: Gardner’80] describes: “converting the timed logic 

levels into analog quantities”
– Generates reference spurs that require filter

• Consequence: tradeoff between the reference spur 
level and settling time

• No such tradeoff with true phase-domain operation
– See [3: Kajiwara’92]
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Preview: All-Digital PLL
• Charge-pump 

PLL:
• Suffers from 

reference 
spurs

• Tradeoff: 
bandwidth 
against spur 
level

FREF CKV
Phase 
error

Variable 
phase

Reference 
phase

Tune

R V

Phase/
Frequency 
Detector VCO

Tuning  
voltage

Frequency Divider

UP

DOWN

Charge Pump

Loop Filter
FREF

R V

• All-digital PLL:
• True phase 

domain 
operation

• (Details to 
come…)
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Nanoscale CMOS
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90nm

DRP™

90nm • SoC Integration Includes:
– RF
– Analog
– Power management
– Digital baseband
– SRAM
– Processors
– Software

• Most advanced process 
technology used to maximize 
integration while minimizing 
cost

– 90nm  (shipping) 
– 65nm  (mature design) 
– 45nm and beyond  

(preliminary) 

• 2x area reduction each 
process technology node

• RF/analog is 20-30% of SoC

SoC Drives Cost Reduction

65nm65nm

45nm
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Why Single-Chip Radio?
• "Integration is like gravity”

– Already happened in hard-disk 
drives, ADSL, etc

– Not a single example of 
reversal

• “$20 phones”
• Large untapped market in 

India and China
• More “real estate” space for 

advanced features
• Better reliability

– Today, more than half of the 
total components on a board 
are analog RF components

• Longer talk time
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Technology Trends for 45 nm CMOS
• 45 nm doubles transistor density over 65 nm and quadruples 

over 90 nm technology
– To support more standards, radios and multimedia in mobile phones

• Smaller transistor capacitances hence lower power 
dissipation

• Nominal supply voltage of 1.1 V; ranging from 0.9 V to 1.2 V
• SRAM size of 0.24 um2 optimized for size
• Conventional gate stack of nitrided silicon dioxide and 

polysilicon gate
– Metal gate only for high-performance process (SUN Sparc)

• No high-k dielectric
– Very little performance gain compared with higher complexity and cost

• New package technology
– Stacked die for embedding of large memories
– Dies embedded in a board to maximize space and performance
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Nanoscale CMOS Technology Trends
• Variability of minimum size devices gets worse with each 

process node
• Source: ISSCC 04, Microprocessor Forum, p29

Relative Gate Length (CD) Variation Relative NMOS Vth Variation
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New Paradigm

In a highly-scaled CMOS technology, 
time-domain resolution of a digital 
signal edge transition is superior to 
voltage resolution of analog signals
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Rules of nm-Scale CMOS
• Exploit:

– Fast switching characteristics of MOS transistors
• 20 ps transition and fT of 250 GHz in 45-nm CMOS
• Improves 20% per process node (18—24 months)

– Small device geometries and precise device matching
– High density of digital logic: 1 Mgates/mm2 in 45-nm 

CMOS
• 2x scaling at each process node (18—24 months)

– High density of SRAM memory: 4 Mbits/mm2 in 45-nm 
CMOS

• Avoid:
– Biasing currents for analog circuits
– Reliance on voltage resolution
– Nonstandard devices not needed for memory and logic
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Trend towards Digitization (e.g.#1)
• (Example)
• A/D => ACCUM => D/A
• Gets rid of the large leaky integrating capacitor

– Leakage acts like an additional resistor
• Integrating pole stays at zero

Perrott et al
US patent 6,630,868
2001 (filing date)
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Mitigation through Architecture (e.g.#1)

• (Example)
• DPLL in 90-nm
• Uses TDC for phase 

detection
• Digital loop filter

TDC

Digital loop filter

• [8: Lin’04]
• Also see

– [5: Dunning’95]
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• Using multiple equally-spaced phases generated from a 
VCO to synthesis various frequency and phase, by 
triggering the flip-flops at predestined time

• Principle idea: see diagram below (just the principle).
• [9 – L. Xiu]

Flying-Adder Frequency/Phase Synthesis
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• An example: 
– VCO at 156.25 MHz (6.4 ns) →Δ = 6.4/32 = 0.2 ns (assume N=32)
– Wanted: 204.08 MHz, or T = 4.9 ns →FREQ[9:0] = T/(2Δ) = 4.9/0.4 = 

12.25 = 01100.01000b
– Integer portion is used for selecting tick, fractional portion is for 

accumulation.

0
00000

12
01100

24
11000

4
00100

17
10001

29
11101

   00000.00000
+ 01100.01000

01100.01000

   01100.01000
+ 01100.01000

11000.10000

   11000.10000
+ 01100.01000

00100.11000

   00100.11000
+ 01100.01000

10001.00000

   10001.00000
+ 01100.01000

11101.01000

12 12 13 1212

MUX 
Address

Flying-Adder Frequency/Phase Synthesis
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All-Digital Phase-Locked Loop

R V

Frequency 
reference

Frequency command word

Variable 
frequency

FCW
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Simple Idea of Phase Domain
• Construct expected or ideal timestamps

– “Reference phase”

• Measure the actual timestamps
– “Variable phase”

• Their difference is the time error
– Used for future timing corrections as negative feedback

Expected 
timestamps

Actual 
timestamps

t[1] t[2] t[3] t[4]

t
Noise pdf Error as 

correction
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Issues with the Simple Idea
• Synthesized (variable) frequency is typically much higher 

than the reference frequency
• Non-integer relationship
• How to truly operate in time domain, i.e., “timestamps”?
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Proposed Solution
• Reference and variable signals are digital clocks

– Use only their (rising) edges

• Phase error calculation to be performed on reference edges
• Turn the phase detection problem around

– Measure the reference timestamps with the variable clock
– Sample the count of variable clock cycles with each reference edge
– If variable phase drifts, their sampled count will get affected

R R R R

Reference

Variable (nom)

Variable (early)

Variable (late)
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Hardware Needed for Digital Operation
• Accumulator of FCW
• Interpolator or normalize estimator of edge separation

– Time-to-digital converter (TDC)

• RF oscillator needs to be numerically controlled:
– Digitally-controlled oscillator (DCO)

• Digital phase detector and loop filter
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Digitally-Controlled Oscillator (DCO)
ΣΔ Modulator and DCO Interface
Time-to-Digital Converter (TDC)

Digital Loop Filter (LF)
All-Digital PLL (ADPLL)

ADPLL Wideband Frequency Modulation
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MOS Varactor
• Only simplest varactors 

in the digital CMOS
• Perceived poor quality of 

varactors in a nanoscale 
CMOS for conventional 
VCO’s

• Conventional CMOS varactors
– Large linear range for precise and wide frequency control

• Nanometer CMOS varactor
– Linear range is compressed with high noise sensitivity



R. Bogdan Staszewski, DCAS Seminar, 21 Feb 2007 40

Digital Tuning of DCO
• A large linear varactor in conventional VCO replaced 

with a large number of tiny binary-controlled 
varactors in a digitally-controlled oscillator (DCO)
– Smallest varactor size: tens of atto-farad

• Deliberate avoidance of any analog tuning
• The feedback loop could now be fully digital
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DCO Core
• 3.2—4 GHz range

• No analog tuning controls
– V_tune_high and V_tune_low

set to two flat operating 
points of the C-V curve

tune_low

tune_high

T1

x

1

varactors

b

2

0
0

GND

1A

VDD
1B

T2

0

x



R. Bogdan Staszewski, DCAS Seminar, 21 Feb 2007 42

DCO Varactor Functional Banks
• Process/voltage/temperature (PVT) calibration mode
• Acquisition mode (during channel select)
• Tracking mode (during the actual TX and RX)

– Dithering to improve resolution

dk C0

ΔC

Varactor model:
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GSM Bands
• Single oscillator covers four GSM bands

– ÷2/÷4 clock division

824 849 869 894

880 915 925 960

GSM 850

E-GSM 900

1710 1785 1805 1880
DCS 1800

820-MHz 840 900860 880

1850 1910 1930 1990
PCS 1900

1640

920

1680 1720 1760 1800 1840
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1920
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1000

2000

-25- -25-

-35-

-75- -75-

-60- -60-

-35-

3280 3360 3440 3520 3600 3680 3760 3840 3920 4000DCO core:

935890
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(EU)

(US)

ext ext



R. Bogdan Staszewski, DCAS Seminar, 21 Feb 2007 44

DCO ASIC Cell

• Truly digital I/O’s even at 1.8 GHz output – tr<50 ps
• DCO built as a digital ASIC cell despite analog underlying 

internals
• DCO analog nature does not propagate
• Circuitry around it can be digital
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Digitally-Controlled Oscillator (DCO)
ΣΔ Modulator and DCO Interface

Time-to-Digital Converter (TDC)
Digital Loop Filter (LF)
All-Digital PLL (ADPLL)

ADPLL Wideband Frequency Modulation
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DCO Varactor Dithering Principle
• Frequency resolution enhanced by high-speed 

dithering of the finest varactors
• Produces spurious tone at the oscillator output with 

power inversely proportional to the dithering speed
– Spur power = -20 log(β/2) [dBc], where β is a 

dimensionless ratio of the peak frequency deviation (low) 
to the modulating frequency (high)

– e.g., β = 12 kHz / 225 MHz => -91 dBc spur

1

2
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Sigma-Delta DCO Dither
• Improves time-averaged DCO frequency resolution 

over the basic Δf = 12 kHz
– New resolution: 12 kHz / 28 = 47 Hz

7 Thermometer 
encoding

128
RF 
out

3

FREF

Tuning
word

fract. 
bits

integer 
bits

fract. 
average 

value

(~225 MHz)

7

8

15

8

(26 MHz)



R. Bogdan Staszewski, DCAS Seminar, 21 Feb 2007 48

ΣΔ Modulator
• 2nd order MASH structure
• Inspired by [4] (Riley’93)

– Critical path retimed for high-speed operation
• Addition of ΣΔ polynomial inside the DCO

1

2

[13: TCAS-II Nov’03]
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Simulation Example of ΣΔ DCO Dither

• Fixed-point 
DCO tuning 
word

• Red: Integer 
DCO input word

• Black: running 
average
– Faithful 

reproduction of 
the input!

• 2nd order MASH ΣΔ Modulator

Input

Output
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DCO Quantization Noise Derivation
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[17: JSSC Nov’05]

PN is frequency shaped!
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Theoretical Phase Noise Spectra

� Δf = 12 kHz
• fR = 26 MHz
• fdith = 225 

MHz
• 2nd order ΣΔ
• Quantization 

noise energy 
at high-freq.

[17: JSSC Nov’05]
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Measured DCO Phase Noise

-165 dBc/Hz 
at 20 MHz 
offset

Eliminates 
SAW filter

915 MHz

No degradation due 
to ΣΔ dithering
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Dynamic Element Matching
• Unit-weighted varactors have slightly different capacitative 

values
• As capacitors are turned on and off, non-linearities will be 

evident in the output
• Dynamic element matching (DEM) to improve digital-to-

frequency conversion linearity

Progression of time (shown 8 cycles)

8x8 varactor encoding matrix:
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Synchronously-Optimal Sampling

Delay line adjustment

DIV

Tuning 
word

1300 1400 1500 1600 1700 1800
-68

-67.5
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Phase noise at 400 kHz offset vs flyback delay

Flyback delay [ps]

P
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 n
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 [d
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]

• DCO is a time-variant system
• Digital input controls the oscillating 

frequency by modifying the total 
capacitance

• Oscillator input word changes only at 
precise DCO state where it causes 
least amount of perturbations

Measured PN vs. round-trip delay
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Normalized DCO

rf
K
KffK R

DCO

DCO
RnDCO ⋅== ˆ)(

• KDCO is dependent upon PVT
• KDCO therefore is tracked and normalized
• Decouples the phase and frequency info from 

process, voltage and temperature

DCO

R

DCO 

nDCO 

V v
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Digitally-Controlled Oscillator (DCO)
ΣΔ Modulator and DCO Interface 
Time-to-Digital Converter (TDC)

Digital Loop Filter (LF)
All-Digital PLL (ADPLL)

ADPLL Wideband Frequency Modulation
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Time-to-digital Converter (TDC)
• Quantized phase detector with resolution of about 20 ps
• DCO clock passes through the inverter chain
• Delayed outputs are sampled by FREF
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TDC Core Implementation
• Novel pseudo-differential architecture
• Insensitive to NMOS and PMOS mismatches
• TDC resolution close to an inverter delay

– 15 – 20 ps
– Fastest logic-level regenerative delay in CMOS

EN

Cell #1 #2 #3 #48

Q(1) Q(48)Q(2) Q(3)
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Flipflop Metastability Curve

MN1 MN2

High-Resolution Flip-Flop
• Adapted from [Nikolic, JSSC’00]
• Symmetric along the vertical axis
• Identical resolution of rising and falling edges
• Light input loading
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• Simulated metastability
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TDC Normalization

• Accurate calibration of the 
inverter delay

Pseudo-Thermometer Code Detector

(rise)
(fall)5 5

V inv
Period 

normalization
multiplier V inv

F
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][1
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N

T V

N

kavg
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∑
=
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invV

W

tT

F

Δ
=−

/
2ε

• Expected output 
between 0.0 – 1.0 UI
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TDC System
• Extended dynamic range
• Resampler needed to 

avoid metastability
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TDC-Based All-Digital PLL
• TDC replaces the conventional PFD and charge pump
• TDC measures the actual FREF timestamps
• FCW is a fixed-point frequency multiplication ratio
• FREF timestamps compared with accumulated FCW
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Phase Noise Due to TDC

• In-band phase noise at RF output [TCAS-II’06]
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– E.g., Δtinv=20ps, fv=1.8GHz, fR=26MHz, L = -97.8dBc/Hz
– Good enough for GSM: can get only better
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Digitally-Controlled Oscillator (DCO)
ΣΔ Modulator and DCO Interface 
Time-to-Digital Converter (TDC)

Digital Loop Filter (LF)
All-Digital PLL (ADPLL)

ADPLL Wideband Frequency Modulation
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Type-II Loop Filter

QD
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2
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• No correlative detection spurs
• Software programmed PLL loop:

– Gentle transition of type-I to type-II
• Two “knobs” α, ρ
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Loop filter with IIR Filtering
• 4th order digital IIR loop filter to suppress the 

frequency reference and TDC quantization noise 
• Unconditionally stable IIR filter
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Digitally-Controlled Oscillator (DCO)
ΣΔ Modulator and DCO Interface 
Time-to-Digital Converter (TDC)
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All-Digital PLL (ADPLL)

ADPLL Wideband Frequency Modulation
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All-Digital PLL (ADPLL)
• Phase domain operation
• Digitally synchronous fixed-point arithmetic
• Phase signals cannot be corrupted by noise
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Modulo Arithmetic
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0,2 (mod-2WI)

• Theoretically, reference θR and variable θV phases  grow 
without bound 

� θR and θV implemented in modulo arithmetic to limit 
wordlength: WI = 8, WF = 15
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e.g., N=10, modulo-16
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(no phase error)
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Reference Phase Retiming
• DCO clock and FREF domains are not entirely synchronous 

despite being in phase lock
• Variable and reference phases cannot be compared in 

hardware: metastability!
• Solution: Oversampling FREF by CKV and using the 

resulting CKR

FREF CKR

CKV

D Q CKV

FREF

CKR

1 2 3
time
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Frequency Response of 2nd-order PLL

N
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• IIR filter turned off
• Type-II second-order PLL loop
• “knobs” α, ρ s
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2nd-order PLL: Closed-Loop Response
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FREF/TDC Transfer Function

• Type-II 2nd 

order PLL
• Weak 

filtering

ζ=0.1, peaking

ζ=5, close to type-I

ζ=1

ζ=1/2
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DCO Transfer Function

• Type-II 2nd 

order PLL
• 20 dB/dec

– Type-I
• 40 dB/dec

– Type-II
• 1/f noise 

attenuation

ζ=5, close to type-I

ζ=0.1, peaking

ζ=1
ζ=1/2
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z-Domain Model of the ADPLL
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• “knobs” α, ρ, λ1-4

• Type-I or Type-II PLL loop
• 1st through 6th order
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ADPLL Transfer Function
• Type-II 6th-order PLL
• Settings: α = 2-7, ρ = 2-15, λ = 2-[3 3 3 4]

• Provides 33 dB of attenuation at 400 kHz
• Provides 40 dB/dec filtering of 1/f DCO noise

FREF / TDC path DCO path
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Measured Carrier Phase Noise 

• 824.2 MHz 
carrier

• 26 MHz FREF
• -92…-95 

dBc/Hz in-
band phase 
noise

• 0.5 deg rms 
phase noise
– Spec: 5 deg

• -122 dBc/Hz 
@ 400 kHz

-93.4 dBc/Hz

-106.2 dBc/Hz

-121.6 dBc/Hz

-92.7 dBc/Hz
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ADPLL with Zero Phase Restart

• 20 us to 
settle
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Gear Shifting of PLL Bandwidth
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• Executed in tracking mode after the acquisition is 
completed

• Normalized tuning word continuity before and after the 
event

• Guarantees no frequency perturbation of the oscillator
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PLL Modes: Close-In Phase Noise

• Gradual phase 
noise 
improvement 
with narrowing 
down the loop 
bandwidth

• Little 
improvement 
after second 
gear shift when 
the DCO noise 
predominates
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Measured Trajectory during Settling
• Gear shift at 23 us
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Digitally-Controlled Oscillator (DCO)
ΣΔ Modulator

Time-to-Digital Converter (TDC)
Digital Loop Filter (LF)
All-Digital PLL (ADPLL)

ADPLL Wideband Frequency Modulation
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ADPLL with Wideband Modulation
• Two-point frequency modulation

– Direct feedforward path – y[k] directly drives the DCO
– Compensating path – y[k] added to the channel FCW
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DCO Gain Estimation

• Estimation of RF oscillator gain is critical in low-cost high-
volume transceivers
– RX: sets the loop bandwidth
– TX: sets transfer function of the direct frequency modulation path
– Tolerated gain estimation error from less than 1% (CDMA) to several 

% (GSM, Bluetooth)
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KDCO Error Effect on GSM Modulation

• Y-axis: RMS 
phase error 
[deg]

• X-axis: KDCO 
estimation 
error [%]

• KDCO 
estimation 
error of 
several % 
allowed

GSM specification

Measured

Theory: z-domain
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Average M1
samples

underestimate

overestimate
correct

estimate

single-step 
feedforward jump

time
PLL forced 

frequency change

Waiting W cycles for PLL to settle

PLL settled PLL settled

Average M2
samples

Just-in-time DCO Gain Estimation

OTW
fKDCO Δ

Δ
=ˆ

• Forces Δf through the PLL
• Measures steady-state ΔOTW
• Could be repeated a few times for better estimation



R. Bogdan Staszewski, DCAS Seminar, 21 Feb 2007 88

Measured GSM Output Spectrum

• Meets GSM 
spec
– 8 dB margin 

@ 400 kHz
• Phase error

– 1o rms (5o

spec)
– 3o peak 

(20o spec)
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All-Digital Polar TX Architecture

A

Cordic
and polar 

signal 
processing

I

F

Q

s

Modulator

Modulator

• Dense logic for digital 
signal processing

• DCO for digital-to-
frequency conversion

• DPA for digital-to-RF-
amplitude conversion

Signal Attenuated 
replicas

sinc2
f/a Replicas

s s
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Digitally-Controlled Power Amplifier
• Array of unit-

weighted MOS 
switches

• Each switch 
contributes a 
conductance

• Near class-E 
operation

• Fine amplitude 
through ΣΔ
modulation

• The DPA can be 
thought of as an RF 
DAC, where “A” is 
RF “amplitude”

IC
ex

te
rn

al
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Measured EDGE Modulation

• 1.24% meets the 
rms EVM spec of 
9%

• 3.67% meets the 
peak EVM spec of 
30%

• Meets the spectral mask with 10 dB 
margin
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Single-Chip GSM Radio in 90 nm

DPA

Digital 
logic

Discrete
time

Digital 
logic

Front-end
Module

LNAA/D

Current 
sampler

AMDCXO

XO
• 90 nm CMOS
• All-digital PLL
• All-digital TX
• Digitally-

intensive RX
• w/o

– 2-W PA
– Battery 

management

VBAT

Battery Management
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Single-Chip GSM Radio in 90 nm
DRPDRP

• First single-chip GSM radio
• In volume production
• Logic density of 250 kgates/mm2

• SRAM density of 1 Mbits/mm2

Memory

Digital

Analog

RF

Display
Connector

Flash
16Mb

Audio
Connector

Charger
Connector GSM/GPRS SoC

PA

Display
Connector

Flash
16Mb

Audio
Connector

Charger
Connector GSM/GPRS SoC

PA

Display
Connector

Flash
16Mb

Audio
Connector

Charger
Connector GSM/GPRS SoC

PA
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Conclusions
• Survey of RF wireless frequency synthesizers
• Highly-scaled CMOS is extremely unfriendly for RF 

and analog designs
• Radio architecture must transform voltage-domain 

circuits into time-domain operation and high-speed 
digital logic

• All-digital PLL (ADPLL)
– ADPLL features wideband frequency modulation

• All-digital and digitally-intensive architecture in 
nanometer CMOS can replace traditional RF 
circuits

• Performance demonstrated in a commercial single-
chip GSM radio
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