Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Software Optimization Workshop for
Real Time Video Applications

By

Dr. Jagadeesh Sankaran,
Member of the Group of Technical Staff,
DSP Software Applications Engineer,
Streaming Media Team.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl

Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

COURSE ABSTRACT

Software techniques that are crucial to extracting
performance from DM642 DSP for video applications.

Techniques That Will be Reviewed
a) Code Optimization Techniques.
b) System Optimization Techniques.
c) Showcase DM642 performance for

video applications.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Why do we need to optimize?

My algorithm is in C, Tl says it has an optimizing compiler that can get up to 80% of the
performance in assembly coding from C, yet my performance is terrible.

| have used the correct instructions in C using intrinsics yet the compiler is showing a
high dependency bound, and hence my performance is messed up.

| do not believe in the compiler, | always write my own hand coded assembly.

This one algorithm consumes my whole chip (or nearly) and hence it cannot be
performed on a DSP. TI C6000 DSP’s are hard to optimize.

Does not matter whether the DSP runs at 600MHz, 720MHz if the code that is written
does not take advantage of the available units and the instructions of the architecture.

VLIW is a good architectural style in the hands of developers who know how to expose
the available parallelism for the compiler to take advantage of.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

What does Optimum Mean

An act, process, or methodology of making something fully perfect,
functional, or effective as possible.

Continuous process of refinement in which code being optimized
executes faster and takes fewer cycles, until a specific objective is
achieved (real-time execution).

How do we know when to stop ??

Optimum:
Greatest degree attained or attainable under specified or implied
conditions.

How do we figure out how fast a given algorithm can run on a given
architecture ?

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

How do we determine the Optimum
Analysis is specific to the algorithm.

Raw performance for a given computation loop depends on:

a) Number of loads and stores needed.

b) Number of multiply operations needed.

c) Number of logical operations needed.

d) Size of the data that is being worked on shorts, bytes.

Given this many operations and the capabilities of the architecture
how long should it take to perform this algorithm?

Are there any data related dependencies between the _
computations that will prevent performing “K” computations in parallel?

If there are no data dependencies then we should take only as many cycles
as the most intensive arithmetic operation divided by how many such
arithmetic operations can be performed on the architecture in a given
cycle, which is the raw throughput of the architecture.

Because of the data dependency how much does the performance
degrade from the raw throughput of the architecture.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

KEY FEATURES OF TMS320C6x VLIW DSP
Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

CH4x™ DSP Core 32-bit Registers: 64
— IsootdnFech - || o | 2 Data paths: A and B
Instruction Dispatch .
- L - Units:
Instructon Decodea [=))
Data Path 1 Data Path 2 L: Logical units, AND, OR, XOR
"_ g-;.;..ﬁ"“' m"g,,.';" = S: Shifter unit, ADD, SHR, SHL, Extract, Branch
— el D: Load/Store unit
- & e L= § T . : u I
11 1 1 —1 1 11 o
*!f ? '::‘ .E'.,' I ‘3':1 T’ ? ‘11 I M: Multiply unit
S5 B | BB Predication Registers:
A0, Al, A2, B0, B1, B2
Fetch packet: 256 bits
1 Execute Cycle:
BDEC .S1 LOOP, A :[24,1]
1 1['A_pd]ADD .L2X B_tO, A tO, B_templ :[24,1]
I 1['A_pd]ADD L1 A _prodC, A _prodD, A vO ;[24,1]
11 DOTP2 -M2 B x5x4, B y4y3, B_prod6 ;[16,2]
11 DOTP2 -M1 A x3x2, A y2yl, A _prod5 ;[16,2]
11 PACKLH2 .S2 B y7y6, B _y5y4, B_y6y5 ;[16,2]
11 LDDW .D2T2 *B_xptr++[2], B Xx7x6:B_x5x4 ;[8.3]
11 LDDW -D1T1 *A xptr++[2], A x3x2:A x1x0 ;[8,31

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Developer CoﬁQECIWARE PIPELINING

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Tl

Connecting Real People with Real Solutions

T (P) PROLOG

X K < L

(K) KERNEL

(E) EPILOG
: l X depends on algorithm
lteration Number dependencies.

L PROCESSING w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Code Optimization Goals

Code should be written only after analyzing the optimum to serve as
a proof of concept that the analysis performed can indeed translate
to actual performance.

% Several issues with code and code generation that may limit the
performance obtained from compilers.

Is there any preferred/systematic methodology to perform code
development for developers to share their results.

This systematic methodology can be provided back to Tl
(if there are no IP issues) for them to improve the compiler
or provide suggestions on ways and means to improve the
performance.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Code Optimization Methodology

Six different flavors of the same function being optimized.

1. Natural C code or Committee code. Text Book implementation of the algorithm
to be optimized. Used to compare other flavors for speedup and for
bit-exactness. This can also be viewed as the golden C code.

%

2. Optimized C code can use manual loop unrolling of inner and outer loops.
It can also use compiler pragma’s and _nasserts to the compiler to inform

it about the alignment of various input and output arrays. This allows the
compiler to perform automatic SIMD transformations, which works in some

cases but not all.

3. Intrinsic C code allows for the use of all the instructions on the given
architecture and can be used to express any assembly language code in
a high level environment. The only limitation is circular addressing
support. The compiler may not be able to perform memory alias
disambiguation or partition instructions correctly between the two

data paths of the architecture.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Code Optimization Methodology

E] 4. Serial assembly is a mapping of the intrinsic C code into assembly by directly
using the instructions in an assembly language format. Assembly optimizer is

invoked to act on these instructions and perform register allocation and
,@L scheduling.

5.Partitioned serial assembly performs partitioning of the instructions by
appending a .1 or .2 in front of the unit. Load/Store operations can be partitioned
as .DxTx to indicate which side the pointer comes from and to which side the
loaded value lands. The use of .1x shows that the second operand comes from the

opposite data path.

Both partitioned and linear assembly do not have any latencies that the
programmer must take care of. The assembly optimizer figures out latencies and
dependencies and then performs instruction scheduling.

6. Of course, there is always hand code where the user does instruction set
selection, register allocation and the latencies of the instructions.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference Code Optimization Methodology

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Optimized C code: Smallest effort. Relies totally on compiler to perform
automatic code transformations to use new instructions.

Intrinsic C code: More effort. However very flexible method to map out
all the instructions and the algorithmic transformations that are
needed for optimizing the algorithm. Can be very useful for mapping
algorithm to serial assembly.

Serial assembly and Partition serial assembly allow further control and
mapping to units and remove scheduling issues associated with C code.

All flavors except hand code can benefit as follows:

a. Improvements to the compiler and code generation tools.

b. Can be re-scheduled to avoid new architecture restrictions. eg. C64x cross path
stall can be avoided in C62x code by re-compiling.

c. Memory dependencies and latencies are automatically taken care of by tools,
whereas hand code assumes a fixed latency. Hence serial and partitioned serial
assembly code are pipeline independent but yet high performance.

CHOICE IS IN YOUR HANDS

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

EXAMPLES IN THIS CLASS

Video Processing Examples (illustration)

1) Motion Estimation (8x8) search for minimum SAD value.
%l Put Bits, Variable length encoding.

Image/Video Processing Lab Examples on DM642

3) Convolution, Quantization conv_3x3
4) Threshold operation (Rate Control).

Each example will be optimized using the code optimization
methodology outlines earlier in six flavors as discussed earlier.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Find (x, y) that is the best match for the 8x8 region
TIID | Conf in blue that we are searching in a green region of
eveioper Lonterence sjze x,y. The (x, y) may not be word or double
February 18-20, 2004 « Houston, TX « Westin Galleria Hotel \word a|igned. Each pixe| is differenced and the
Connecting Real People with Real Solutions SUM Of absolute values is added. The value of
(x,y) is the location which yields the minimum such value.

Minimum Absolute Difference (8x8)

» SICX <

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel Natural C Code for mad_8x8

Connecting Real People with Real Solutions

void mad 8x8 cn

(

const unsigned char *restrict reflImg,

const unsigned char *restrict srcImg,
m%l int pitch, int sx, int sy,

unsigned int *restrict motvec

{
J@L int i, j, x, y, matx, maty;
unsigned matpos, matval;
matval ~0U; matx = maty = 0;
pitch SX;

1=

for (x 0; X < SX; X++)
for (y = 0; y < 8y; y++)

unsigned acc = 0;
for (1 = 0; 1 < 8; 1i++4)
for (7 = 0; j < 8; J++)
acc += abs(srcImg[i*8 + j] - refImg[(i+y) *pitch + x + jl);

if (acc < matval)

{

matval = acc; matx = X; maty = Vs
}
}
matpos = (Oxffff0000 & (matx << 16)) | (0x0000ffff & maty) ;
motvec [0] = matpos;
motvec [1] = matval;

REAL WORLD SIGNAL PROCESSIN {{'}TEXASINSTRUMENTS

Analysis Of Optimal Implementation of

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

mad_8x8 for C64x DSP

Connecting Real People with Real Solutions

Number of Byte loads required: 128 * sx * sy.

Number of Absolute and differences required: 64 * sx * sy.
Number of additions required: 64 * sx * sy.

Number of compares: sx * sy .

Observations

a. C64x DSP can perform 8 sum of absolute differences per cycle. Since
64 SAD computations need to be performed for a 8x8 block, this can

at best be performed in 8 cycles provided we can load the required data
within 8 cycles.

b. The C64x has a load/store bandwidth of 16 bytes/cycle if the loads are
performed at an aligned double address. It has a load/store bandwidth of
8 bytes/cycle if the loads are performed at a non-aligned address.

Since the data needs to be loaded from any byte location, the addresses

are not aligned to a word or a double word boundary and hence the C64x
does not have the required bandwidth to load both source and reference

data in 8 cycles. How do we overcome this ???

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl{Developer Conference Analysis Of Optimal Implementation of mad_8xs¢

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel fO r C64X DSP
Connecting Real People with Real Solutions

Since we do not have the required load bandwidth, we should look for

opportunities to re-use the data. This can be done by loading the 8x8
region into register file as it never changes during the loop. It is

essentially loop invariant and hence can be kept in registers in 16
registers. Hence this data is read outside the loop into registers.

@ Given that we have solved the load bandwidth problem, there seems to be
B nothing limiting us from achieving an 8 cycle loop for computing a 8x8
@ minimum absolute difference.

Before we start it is interesting to observe the compiled output for natural
C code to see our current performance.

For a search region of 32x64 the natural C code takes 22254 cycles to
perform 32 * 64 * 64 = 131072 achieving 5.88 SAD/cycle.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Assembly code for Natural C Code

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Analysis Of Optimal Implementation of
Tl{Developer Conference mad_8x8 for C64x DSP

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

The performance obtained from natural C code is more impressive than usual as the

compiler unrolls the two inner loops and uses the subabs4 instructions on its own

performing 16 SUBABS4 instructions in 10 cycles in the inner loop to achieve a 6.4
SAD/cycle.

for (x = 0; X < SX; X++)
for (y = 0; y < sy; y++) Collapse these two loops together.
{

#pragma UNROLL(8) ;

for (i = 0; i < 8; i++) acc += abs(srcImg[i*8 + 0] -
refImg[(i+y) *pitch + x + 0]) + abs (srcImg[i*8 + 1] -
refImg[(i+y) *pitch + x + 1]1) + abs (srcImg[i*8 + 2] -
refImg[(i+y) *pitch + x + 2]) + abs (srcImg[i*8 + 3] -
refImg[(i+y) *pitch + x + 31) + abs (srcImg[i*8 + 4] -
refImg[(i+y) *pitch + x + 4]) + abs(srcImg[i*8 + 5] -
refImg[(i+y) *pitch + x + 51) + abs (srcImg[i*8 + 6] -
refImg[(i+y) *pitch + x + 61) + abs (srcImg[i*8 + 7] -
refImg[(i+y) *pitch + x + 7]);

if (acc < matval) { matval = acc; matx = x; maty = y; }

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin

Galleria Hotel

Connecting Real People with Real Solutions

khkkkkkkkkkkkk Loop
SUB B vl, 1,
MV A pl,
[!B vl] MV A hfix,
[!B vl] MV B v dim,
*kkkkkkkkkkx** Row 7

Control*************************************
B vl

A f

A f

B vl

khhkhkhhhhhkhhhkhhhhhhkhhhhhhhhhhhhkhkhhhhkhhhkhkkk

A ref7h, B err7h

LDNDW *A ref d(A p7), A ref7h:A ref7l
J@L SUBABS4 B_src7h,

SUBABS4 A src7l,
DOTPU4 B err7h,

gh DOTPU4 A err7l,
1= *kkkkkkkkkkx** Row 6

SUBABS4 B srcé6h,
SUBABS4 A srcé6l,
DOTPU4 B erré6h,
DOTPU4 A erré6l,
ADD B row 6,
ADD A row 6,

A ref7l, A err7l
B k one, B mad 7
A k one, A mad 7

khkkhkhhhhhkhhhhhhhhkhkhhhkhhhhhkhkhhkhkhhhhhhkhkhkhhkk*®

LDNDW *A ref d(A p6), B refé6h:B ref6l

B reféh, B err6h
B ref6l, A erré6l
B k one, B row 6
A k one, A row 6
B mad 7, B mad 6
A mad 7, A mad 6

kkkkkkkkkkk (Check for best match ****kkkkkkkkhkhhdhhhhhhkhkkkkkkkkkk
ADD B mad 0, A mad 2, B mad
CMPGT2 B best, B mad, B bst

REAL WORLD

ADD B hvl, 1, B hvl
[B_ bst] MV B mad, B best
[B_ bst] SUB B hvl, 1, B bhvl
[A_ i] BDEC loop, A i

SIGNAL PROCESSIN

¥ TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

mad8x8 loop:

ADD
DOTPU4
ADD
DOTPU4
SUBABS4
SUBABS4
LDNDW
MV

loop 1:

ADD
ADD
ADD
SUBABS4
SUBABS4
DOTPU4
DOTPU4
LDNDW

BDEC
ADD
SUBABS4
SUBABS4
DOTPU4
DOTPU4
LDNDW
SUB

REAL

.D2
M1
.S2
M2
L1
.L2X

.S1

.D2X
.S2
.S1
.L1X
.L2
M2
M1

.S1
.S2X
.L2
L1
.M2
M1
.D
.D2

W O0ORLD

S

B_hV]. ’ 1 7

A err0l, A k omne,
B row 2, B mad 3,
B err3h, B k one,
A srchl, A refbl,
B src5h, A refbh,
*A ref d(A p7),

A pl, A f

A row O, B mad 0,
B row 1, B mad 2,
A row 3, A mad 4,
A src4l, B ref4l,
B src4h, B ref4h,
B err5h, B k one,
A erré6l, A k omne,

*A ref d(A p6),

mad8x8 loop,

B mad O,
B src2h,
A src3l,
B err4h,
A err5l,

A mad 2,
B ref2h,
A ref3l,
B k one,
A k onmne,

*A ref d(A p3),

B vl,

G NAL

1,

B hvl

A row 0

B mad 2

B row 3

A err5l

B err5h

A ref7h:A ref7l

B mad O
B mad 1
A mad 3
A err4l
B err4h
B row 5
A row 6
B ref6h:B refé6l

A i

B mad

B err2h

A err3l

B row 4

A row 5

A ref3h:A ref3l
B vl

PRODCESSING

Ne Ne Ne Ne Ne wo No N
~
—

; [10,3]
;[2,4]

; [27,1]
; [27,1]
; [11, 3]
; [11,3]
; [11, 3]
;s [11, 3]
;[3,41
;[3,41

¥ TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

E

1=

loop 3:

loop 4:

CMPGT2
SUBABS4
DOTPU4
SUBABS4
DOTPU4
ADD
LDNDW

[!B v1IMV

[B bst] SUB

REAL

[B bst]MV

ADD
SUBABS4
SUBABS4
DOTPU4
DOTPU4

[A i] LDNDW

DOTPU4
SUBABS4
DOTPU4
ADD
ADD

[A_i] LDNDW
[A”i] SUBABS4
[IB v1IMV

.S2
.L2X
M2
.L1X
M1
.D2
.D
.S1

.D2
.S2
.S1
.L1X
.L2
.M2
M1
.D

M2
Ll
M1
.D2
.S1
.D
.L2X
.S2

W O0ORLD

S

B best, B mad,

B srclh, A reflh,
B err2h, B k one,
A src2l, B ref2l,
A err4l, A k omne,
B row 6, B row 7,
*A ref d(A p5),

A h fix, A f

B hvl, 1,

B mad, B best
A row 2, A mad 3,
A srcOl, B ref0l,
B srcOh, B refOh,
B errlh, B k one,
A err3l, A k onmne,

*A ref d(A p4),

B errOh, B k onmne,
A srcll, A refll,
A err2l, A k one,
B row 5, B mad 6,
A row 6, A row 7,
*A ref d(A p2),

B src7h, A ref7h,
B v dim, B vl

G NAL

B bst

B errlh
B row 2
A err2l
A row 4
B mad 6

A ref5h:A ref5l

B bhvl

A mad 2
A err0Ol
B errOh
B row 1
A row 3

B row 0
A errll
A row 2
B mad 5
A mad 6

B ref2h:B ref2l

B err7h

PRODCESSING

; [13,3]

Ne Ne Ne Ne No No Nwo wo
e e N N N N N W |
1N
~
w
—_

¥ TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

ADD .D2X A row 1, B mad 1, B mad 1 ; [23,2]

DOTPU4 .Ml A errll, A k one, A row 1 ; [15,3]

ADD .S2 B row 4, B mad 5, B mad 4 ; [15,3]

ADD .S1 A row 5, A mad 6, A mad 5 ; [15,3]

UE] [A i] LDNDW .D *A ref d(A pl), A reflh:A refll ;[7,4]
[A i] SUBABS4 .L2 B srcé6h, B ref6h, B err6h ;[7,41

[A i]DOTPU4 .M2 B err7h, B k onmne, B row 7 ;[7,41

JBl. [A i] SUBABS4 .L1 A src7l, A ref7l, A err7l ;[7,4]
ADD .S2 B row O, B mad 1, B mad 0 ; [24,2]

% ADD .D2 B _row 3, B mad 4, B mad 3 ; [16,3]
o ADD .81 A row 4, A mad 5, A mad 4 ; [16,3]
[A i] LDNDW .D *A ref d++(A _f), B refOh:B ref0l ;[8,4]

[A i] SUBABS4 .L2X B src3h, A ref3h, B err3h ;[8,4]

[A i]DOTPU4 .M2 B erré6h, B k one, B row 6 ;[8,41

[A i]SUBABS4 .L1X A srcé6l, B refé6l, A erré6l ;[8,41

[A i]DOTPU4 .Ml A err7l, A k one, A row 7 ;[8,4]

64 sum of absolute differences is computed in 8 cycles at the peak throughput rate of 8/cycle. Also
as suspected the full non-aligned load bandwidth of 64 bits/cycle is used.

(f

) The performance of the different flavors of code is now summarized in the next slide.

o

¥ TEXAS INSTRUMENTS

REAL WORLD SIGNAL PROCESSING.

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

MAD_8x8 Performance Summary for (64x32)

CN CO Intrin. Serial Part. Hand
Assem. Serial Assem.
Assem.
22254 22254 | 22254 20561 16454 16458
cycles cycles | cycles cycles cycles cycles
1280 1280 1248 1056 1280 800
bytes bytes bytes bytes bytes bytes
7.96
MAD/cycle
REAL WORLD SIGNAL PROCESSING.

wi? TEXAS INSTRUMENTS

Put Bits, Variable Length Encoding

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

out_reg

|

Connecting Real People with Real Solutions

> 32 <

0110101

1

bp OXDEADBEEF
S5 OXFADEADCE

@ OxCAABBS53E
(3
S 0101 XXXXXXX

S110xxxxxxx

O© | W 00|~

num_entrig out_buff

101001100x ‘ _ Ien_ptn_{
| ,code_ptre—
L

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Put Bits,

Tl|Developer Conference Variable Length Encoding

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

void put_bits

unsigned int *code_ptr,
unsigned iInt *len_ptr,

int)

unsigned char *out_buf,

int num_entries,
unsigned int out_reg

N\

int i; _
unsigned int code, len, cws, r;
for(1 = 0; 1 < num_entries; I1++)

{

code = code ptr[i]; len = len ptr[i];
cws = (code >> bp);
if (len) out reg = out_reg | cws;
bp = (bp + len); r = (bp - 31);
Ef D)

*out_buf++ = out _reg;

out_ reg = (code << (len - r));
bp = 1len - r;

4 cycle loop from C Code

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

L2: ; PIPED LOOP KERNEL

[AO] OR .S2 B8,B6,B6 ; 30| <0,9>
|[Al] MV .L2X A5,B7 ; |38] <0,9> Define a twin register
|[[AO] OR .D1X B8,A3,A3 ; |30] <0,9> Define a twin register
| ROTL .M1 A8,0,A0 ; |127] <1,5> Split a long life
| ADD .S1 AS8,A4,A4 ;31| <1,5> ~
| LDW .D2T2 *B4++,B8 ; |26| <2,1>
[Al] STB .D2T2 B6,*B5++ : |36| <0,10>
[Al] SHL .S1X B9,A5A3 : |37] <0,10>
ROTL .M2 B8,0,B9 ; |26] <1,6> Split along life
ADD .L2X A8,B7,B7 ; |31] <1,6> Define a twin register
SHRU .S2 B8,B7,B8 : |30] <1,6>
ADD .D1 A6,A4,A2 ; <1,6> 7
ROTL M1 A2,0A1 ; <1,7> Split along life
[BO] BDEC .S2 L2,BO ; 140| <1,7>
SUB .D1 AO0,A2,A5 ;137] <1,7> ~
[Al] MV .D2X A3,B6 ; |37| <0,12> Define a twin register
[A2] MV .S1 A5A4 ;138 <1,8> ~
LDW .D1T1 *A7++,A8 : 127| <3,0>

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl

Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

> bp = bp + len DE—

4 cycles 1
A 4

r=bp-31

A
1
y v
Y N 1
1
bp=len-r

Put Bits: Variable Length Encoding, Complexity Analysis

REAL WORLD SIGNAL PROCESSING.

wi? TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

bp =bp +len DE—
1 1
Critical path
A 4
Compute rin parallel bp = bp &31; /'
1
2
A 4
v N 1
Store complete word if r

>0

3 cycle loop must be possible.

Put Bits: Variable Length Encoding, Complexity Analysis

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

TI{Developer Conference Optimized Put Bits

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions RO U t I n e

void put bits
(

unsigned int *code ptr,
unsigned int *len ptr,
@l int bp,
unsigned char *out buf,
int num entries,
unsigned int out reg
|§|)
L. .
int 1i;
unsigned int code, len, cws, cwl, r;
@
™ for(i = 0; i < num entries; i++)
{
code = code ptrl[il;
S len = len ptrl[il];
cws = (code >> bp);
cwl = (code << (32 - bp));
if (len) out reg = out reg | cws;
bp = (bp + len);
r = (bp - 31);
bp = bp & 31;
if (r)
{
*out buf++ = out reg;
out reg = cwl;
}

REAL WORLD SIGNAL PROCESSIN J{?TEXASINSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

3 cycle loop for put bits.

Connecting Real People with Real Solutions

L2: ; PIPED LOOP KERNEL
SHL . 81X Bl6,A6,A6 ; |30| <0,9>
Bl MVD .M1 A0,Al ; |27| <1,6> Split a long life
[BO] BDEC .82 L2,B0 ; |42 <1,6>
LDW .D2T2 *B7++,B8 ; |30] <3,0>
ADD .D2 B4,B9,B1l ; |34 <0,10>
[Al] OR .S1X B5,A5,A5 ; 32| <0,10> ~©
7 ADD LL2X A0,B6,B9 ; (33 <1,7> °©
1] [AO] SHRU .82 B16,B6,B5 ; 132 <1,7>
LDW .D1T1 *A7++,A0 : 27| <3,1>
[B1] MV L1 A6,AS5 ; |40| <0,11> ~©
[B1] STB .D1T1 A5, *Ad++ ; 39| <0,11> ©
EXTU .82 B9,27,27,B6 ; |35 <1,8> ©
SUB . 81X A3,B6,A6 ; |30 <1,8>
ROTL .M2 B8,0,B16 ; |30| <2,5> Split a long life

REAL

W O0ORLD

S

I GNAL

PROCESGSING

¥ TEXAS INSTRUMENTS

Tl{Developer Conference Get Bits, Inverse of Put Bits

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions
— bp 4—1

1101 11101010 1101 1011 1101 1101 1111

OxDEADBEEF
— 4
OXFADE5AA5 buff
Ox4CADEABC
data_buff Y) eI
3
— cW 5
00k 011011010111 num_entries 1
12
' len 4 14

o] OXDEAXXXXX
OXABCDEFXX
OXFADXXXXX

out_buff

REAL WORLD SIGNAL PROCESSING. W3 TEXAS INSTRUMENTS

Tl|Developer Conference
February 18-20, 2004 = Houston, TX » Westin Galleria Hotel Get Bits: Function to Mimic

Connecting Real People with Real Solutions Variable Length Decoding

void get bits

unsigned char *len buf,
unsigned int *data buf,
unsigned int *bptr,
unsigned int *buffer,
unsigned int *offset,
unsigned int num entries,
unsigned int *output

int i;

unsigned int cw;

unsigned int bp = *bptr;
unsigned int buff = *buffer;
unsigned int off = *offset;
unsigned int length;

unsigned int rem;

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Get Bits: Function to Mimic
Variable Length Decoding

Connecting Real People with Real Solutions

for (i = 0; i < num entries; i++)

{
length = len buf[i];

fi{'f (length <= bp)

CcwW = (buff >> (32 - length));
JgL buff = (buff << length);
bp = bp - length;
}
@h else
& {
e cw = (buff >> (32 - bp));
[buff = data buf [off];
(] e
- rem = (length - bp):
cw = (cw << rem) | (buff >> (32 - rem));
buff = (buff << rem);
bp = 32 - rem;
}
output[i] = cw;
}
*buffer = buff;
*offset = off;
*bptr = bp;

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel Com p iler An alySiS for Natu ral C COd e
Connecting Real People with Real Solutions

SOFTWARE PIPELINE INFORMATION

Loop source line

Loop opening brace source line
Loop closing brace source line
Known Minimum Trip Count

Known Max Trip Count Factor
Loop Carried Dependency Bound (")
Unpartitioned Resource Bound
Partitioned Resource Bound (*)
Resource Partition:

(1] (1) L]
N
S

Q
(0]

A-side B-s
units
units
units
units
cross paths
. T address paths
Long read paths
Long write paths
Logical ops (.LS)
Addition ops (.LSD)
Bound(.L .S .LS)
Bound(.L .S .D .LS .LSD)

HXEZ 00

(.L or .S unit)
(.LL or .S or .D unit)

WNMNMPFPOORKRMORWO
UUWOOOOONMNWONKR P

*

Searching for software pipeline schedule at ...
ii = 5 Schedule found with 3 iterations in parallel

LTI I TR T O L T T T TIR T TN TN TN TN TN TN TN TN TR TR TN TR TR VI T TR

¥ % ok X Ok F %k F N Ok K %k F Ok ¥ F Ok H % F F * F * * * *

REAL WORLD SIGNAL PROCESSIN {{?TEXASINSTRUMENTS

Tl|Developer Conference Assembly Code From C for Get Bits/

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel VL D 5 CyC I e I 00 p
Connecting Real People with Real Solutions

L4: ; PIPED LOOP KERNEL
[1B1] SUB .D2 B21,B22,B21 ; |30] <0,9>
@l [B1] SUB .S1X A4,B21,A5 ; |37| <0,9> Define a twin register
[B1] SHL .82 B20,B4,B6 ; 38| <0,9>
[B1] MV .L2 B19,B21 ; 39| <0,9> *
j@L [B1] ADD .D1 1,A3,A3 ; |36| <0,10>
[1B1] SHRU .82X A6,B5,B20 ; |28| <0,10>
[1B1] SHL .81 A6,A4,A6 ; 29| <0,10>
gﬁ CMPGTU .L2 B22,B21,B0 ; <1,5> °©
154 LDBU .D2T2 *++B16,B22 ; |25 <2,0>
[B1] SHL .81 A6,A5,A6 ; |40| <0,11>
[B1] SHRU .82X A6,B19,B7 ; |38 <0,11>
ROTL .M2 B0,0,Bl ; <1,6> Split a long life
[BO] SUB .D2 B22,B21, B4 ; 37| <1,6>
[BO] SUB .L2 B17,B22,B8 ; |38 <1,6> °©
[BO] LDW .D1T1 *+A7 [A3] ,A6 ; |29 <1,6>
[B1] OR .L2 B7,B6,B20 ; |38] <0,12>
[BO] SUB .D2 B17,B21,B9 ; |28 <1,7>
[BO] ADD .82 B21,B8,B19 ; |38] <1,7> °
STW .D2T2 B20, *B18++ ; 43| <0,13>
[1B1] SUB .L2 B17,B22,B5 ; |28 <1,8>
MV .D1X B22,A4 ; |25| <1,8> Define a twin register
[B1] SHRU .82X A6,B9,B20 ; |28 <1,8>
[A0] BDEC .s1 L4,A0 ; |44 <1,8>

REAL WORLD SIGNAL PROCESSIN {{?TEXASINSTRUMENTS

TI{Developer Conference Optimized_ C Code for
February 18-20, 2004 = Houston, TX = Westin Galleria Hotel g et b I tS/VL D

Connecting Real People with Real Solutions

for (i = 0; i < num entries; i++)

length = len buf[il];

cw = (buff >> (32 - length));
buff = (buff << length);

bp ¢ = bp - length;

rem = (length - bp);

flag = (length <= bp);

buff t data buf[off];

fld t = (buff t >> (32 - rem));
buff n = (buff t << rem);

if (flag) bp
if (1flag) bp
if (!flag) off++;

if (!flag) cw = cw | £1d t;
if (!flag) buff buff n;
output[i] = cw;

bp c;
32 - rem;

}

*buffer
*of fset
*bptr

buff;
off;
bp;

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference COMPILER ANALYSIS OF OPTIMIZED C CODE

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

SOFTWARE PIPELINE INFORMATION

Loop source line : 32
Ey Loop opening brace source line : 33
Loop closing brace source line : 54
Known Minimum Trip Count : 1
Known Max Trip Count Factor g dl
JﬁL Loop Carried Dependency Bound (") : 3
Unpartitioned Resource Bound : 4
Partitioned Resource Bound (*) g B
Resource Partition:
=t A-side B-side
.L units
.S units
.D units
.M units
.X cross paths

. T address paths

Long read paths

Long write paths
Logical ops (.LS)
Addition ops (.LSD)
Bound(.L .S .LS)
Bound(.L .S .D .LS .LSD)

(.L or .S unit)
(.LL or .S or .D unit)

uwoaobdhbDhoRrdMdDwWODMNMDWO
PWWNOORBPORDNMDN P

*

¥ % ok X Ok F %k F N Ok K %k F Ok ¥ F Ok H % F F * F * * * *

Searching for software pipeline schedule at ...
ii = 5 Schedule found with 3 iterations in parallel

LTI I TR T O L T T T TIR T TN TN TN TN TN TN TN TN TR TR TN TR TR VI T TR

(@

Loop carried dependency bound has gone down, which is good.
We are on the right track.

REAL WORLD SIGNAL PROCESSIN {{?TEXASINSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

TOPO: 32 bits complete

™ Code word (Cw)

TOP1: Partial 32 bit word Request for codeword of length “I”
can always be serviced as long as |
bp T T/LD: Further Opfimjgations °
Buffer
I Data_buff
Buffer_cpy <

off

REAL WORLD SIGNAL PROCESSING. W3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

LOOP:
LDW *A len++, A lcw ; length of code word needed
MV A lcw, B lcw ; copy of length
m%‘ SUB A 32, A lcw, A rs ; rs = 32 - lcw
SUB B 32, A lcw, B rs ; rs = 32 - lcw
SHRU A topo0, A rs, A top0 rs ; top0 rs = top0 >> rs
J@L STW A top0 rs, *A optr++ ; Store out
; Keep top0 at 32 bits
SHL A topO, A lcw, A top0 1ls ; top0 1ls = top0 << lcw
SHRU B topl, B rs, B topl rs ;7 topl rs = topl >> rs
1= OR A top0 1ls, B topl rs, A top0 ; topo = top0 1s | topl rs
; New almost 32 bit top0
SHL B topl, B lcw, B topl ;i topl = topl << lcw
ADD B p, B lcw, B p ; P =p + lcw
SUB B p, B 32, B r ; r =p - 32
AND B p, B 31, B p ; P=p % 32
CMPGT B r, -1, A rw ;7 Check for overflow
SUB B 32, B r, B ru ; Left shift for
SHRU B buff, B ru, B topl ru ; Missing bits
[A rw]OR A topo, B topl ru, A top0 ; Complete 32 bits
[A rw] SHL B buff, B r, B topl ; Update topl
[A rw]lMV B buff cpy, B buff ; Update buff
[A rw] LDW *B ptr++, B buff cpy ; Load buff cpy
[A it]SUB.1 A it, 1, A it ;
[A it]B.1 LOOP ; Branch

WORLD SIGNAL PROCESSIN w3 TEXAS INSTRUMENTS

Tl|Developer Conference GET BITS
February 18-20, 2004 = Houston, TX = Westin Galleria Hotel CO M P L EX I TY A NA L YS I S

Connecting Real People with Real Solutions

v

top0_rs = top0 >> Icw; <

p=p+lcw;

A 4

r=p-32;p=p &31;

Store top0_rs 1

A 4

Update top0

4 cycle loop should be possible.

Recurrence is on top0 of length 3 cycles.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

LOOP:
SUB
SHL
AND
SHRU
LDW

STW

SUB

CMPGT

gh SHRU
1= SHL
MV

OR
[A rwLDW
[A it]B
SHRU
SUB
[A it]SUB

[A rw] SHL
[A rwlMV
[A rw]OR
ADD
SUB

(@

&

REAL

.D2
.S1
L2
.S2
.D1T1

.D1T1
.D2
.L1X
.S1
.S2
.L2X

.L1X
.D2T2
.S1
.S2
.L2X
.D1

.S2
.D2
.L1X
L2
.S1

W O0ORLD

B p,

A topo,

B p,

B topl,
*A len++,

A top0 rs,
B 32,

B 32,
A lcw,
B 31,
B rs,
A lcw

;[9,2]
;[9,21
;[9,2]
;[9,2]

[1,4]

Scheduled Code for Get Bits’

*A optr++
B r,

B r, -1,

A top0, A rs,

B topl, B lecw,

A lcw, B lcw

A top0 1s, B topl rs,
*B ptr++, B buff cpy
LOOP

B buff, B ru,

B 32, A lcw,

A it, 1,

B buff, B r,

B buff cpy, B buff

A top0, B topl ru,
B p, B lcw,

A 32, A lcw,

S |

G NAL

B ru

A rw

A top0 rs
B topl

A topo

B topl ru
B rs
A it

B topl
A top0

B_p
A rs

PR OIC E S 8 |

N

; [14,1]
; [10,2]
; [10,2]
; [10,2]
; [10,2]
;[6,31

; [11,2]

r =p - 32
top0 1s =
P=p % 32
topl rs = topl >> rs
length of code word
needed

top0 << lcw

Store out

Left shift for

Check for overflow
top0 rs = top0 >> rs
topl = topl << lcw
copy of length

top0 1s | topl rs

;[11,2] Load buff cpy

; [11,2]
; [11,2]
;[7,31
;[7,31

; [12,2]
7 [12,2]
; [12,2]
;[8,31
;[8,3]

Branch
Missing bits
rs = 32 - lcw

Update topl
Update buff
Complete 32 bits
P =P + lcw

rs = 32 - lcw

22 operations in 4 cycles ffor an average IPC of 5.5 instructions/cycle

¥ TEXAS INSTRUMENTS

Tl

Connecting Real People with Real Solutions

Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

CONVOLUTION: 3x3
LAB -1

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl{Developer Conference
February 18-20, 20'31-H0ust0n, TX = Westin Galleria Hotel CO NVO L U T I O N 3X 3

Connecting Real People with Real Solutions

/* conv 3x3 cn -- Natural C version of conv 3x3(). */
m%l void conv 3x3 cn(const unsigned char *restrict inptr,
unsigned char *restrict outptr,
int x dim,
const char *restrict mask,
J@L ‘ int shift)
const unsigned char *IN1, *IN2, *IN3;
gh unsigned char *QUT;
Lo short pix10, pix20, pix30;
short maskl0, mask20, mask30;
int sum, sum00, sumll;
int i;
int sum22, 3J;
/* ___ */

/* Set imgcols to the width of the image and set three pointers for */
/* reading data from the three input rows. Alos set the output poin- */

/* ter. */
Y T I e e e T T */
IN1 = inptr;

IN2 = IN1 + x dim;

IN3 = IN2 + x dim;

OouT = outptr;

REAL WORLD SIGNAL PROCESSIN

Tl|Developer Conference coNVOLUTION 3x3, Natural C Code

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

qu (g =0; jJ < xdim ; j++)
sum = 0;
Eor (n =0; 1 < 3; 1t+)
pix10 = IN1[1];
pix20 = IN2[1];
pix30 = IN3[1];
mask1l0 = mask[1];
mask20 = mask[1 + 3];
mask30 = mask[1 + 6];
sum00 = pix10 * maskl1O;
sumll = pix20 * mask20;
sum22 = pix30 * mask30;
sum = sumO0O0 + sumll+ sum22;
+
IN1++; IN2++; IN3++;
sum = (sum >> shift);
iIT (sum< 0) sum = O;
iIf (sum > 255) sum = 255;
*OUT++ = sum;

REAL

W O0ORLD

SI1GNAL

PROCESGSING

wi? TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

SOFTWARE PIPELINE INFORMATION

Loop source line : 83
m%‘ Loop opening brace source line : 84
Loop closing brace source line : 128
Known Minimum Trip Count : 1
Known Max Trip Count Factor g al
Loop Carried Dependency Bound(™) : 3
Unpartitioned Resource Bound S
Partitioned Resource Bound (*) g B

Resource Partition:
A-side B-side

.L units 1 1

.S units 2 0

.D units 5% 5%

.M units 5% 5%

.X cross paths 3 5%

. T address paths 5% 5%

Long read paths 0 0

Long write paths 0 0

Logical ops (.LS) 0 0 (.L or .S unit)
Addition ops (.LSD) 4 7 (.L or .S or .D unit)
Bound(.L .S .LS) 2 1

Bound(.L .S .D .LS .LSD) 4 5*

Searching for software pipeline schedule at ...
ii = 5 Did not find schedule
ii = 6 Schedule found with 6 iterations in parallel

¥ %k ok Nk ok H %k F % Ok F Ok F X F F ¥ F Ok F * ¥ F* ¥ F * * *

(@

@ COMPILER ANALYSIS OF NATURAL C CODE

Ne Ne Ne Ne Neo We Wo We Wo We No Wo No Wo Ne Wo We Wo We Wo Wo No Wo No Wo No Wwo Wo wo

REAL WORLD SIGNAL PROCESSIN {{?TEXASINSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

L4: : PIPED LOOP KERNEL

[AO] BDEC _s1 L4, AO - |128] <0,28>
CMPLT .L1 A8.0,A4 > l120] <1.22> ~
ADD .S2X A4,B4,B5 - |106] <2.16>
ADD _D1X B23,A17,A17 - |106] <3,10>
LDBU _D2T2 *++B19,B22 - |106]| <4.4>
ADD .S2X A25,B5,B24 - |106] <2,17>
MPY _M1 A18.A16,A9 > |106] <3.11>
LDBU _DIT1 *A6++,A5 - |106]| <4.5>
LDBU .D2T2 *-B19(1),B20 - |106]| <4.5>
MPY M2 B4,B9,B23 > |106] <4.5>
MV L2 B4,B24 - |120] <0,30>
ADD .S2 B21,B24,B21 - |106] <2.18>
ADD _S1X B23.A17,A25 > |106] <3.12>
MPY M2 B22.B6,B4 * |106] <3.12>
MPY _M1 A9,A19,A4 - |106] <3.12>
LDBU _DIT1 *++A22,A18 - |106] <4.6>
LDBU _D2T2 *+B19(2),B4 - |106] <5.0>

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl

Developer Conference Analysis of Convolution

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel Al g or | t h m

Connecting Real People with Real Solutions
of byte loads/output pixel: 18

of multiplies/pixel: 9 (16 x 16)
of additions: 9

of stores/pixel: 1
@l Based on these numbers, and given that we can load 2 bytes/cycle, this algorithm appears to
be load bottlenecked at 9 cycles/output pixel.
To overcome this, we can preload values of the 3x3 mask, which is loop invariant into register file and
reduce byte loads/output pixel to 9.

a) Load data for b02, b12, b22 only.

bO0 | bO1
b02 b) For other bytes pre-load and issue

moves, to move the other bytes by
moving the data in register file.

b22 c) b00 =Db01; b0l =b02; b10 = bl1;
bll =bl2; b20 = b21; b21 = b22;
Load b02, Load b12, Load b22.

bl0 | p11 | b12

b20 | b21

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Developer Conference Analysis of Convolution

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions AI g O r I t h m

of byte loads/output pixel =9

Therefore we can use double word wide loads to load eight pixels along every
row. Therefore loads are not a bottleneck.

C64x can perform 8 (8x8) multiplies, and we need to perform 9 (8x8)
multiplies/output pixel, therefore an optimal implementation should achieve 9/8 =
1.125 cycles/output pixel.

We can compute multiple output pixels in parallel. If we compute eight output
pixels in parallel we would need 72 (8x8) multiplies which can be performed in 72/8
=9 cycles.

Optimal implementation must compute 8 output pixels in 9 cycles to achieve a
compute rate of 1.125 cycles/output pixel.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel O p tl I I l I Zed < (O d e

Connecting Real People with Real Solutions

/* ___ */
/* Set loop counter for output pixels and three input pointers x_dim */
/* apart from the user passed input pointer. Copy output pointer */
e ____ */
count = x_dim >> 1 ;

IN1 = inptr;

IN2 = IN1+ x dim;

IN3 = IN2+ x _dim;

ouT = outptr;

/* __ */

/* In order to minimize data loads, dat re-use iIs achieved by moves. */

/* The data to be used for pix10, pixll are pre-loaded into pix1l2 and */
/* pix13 and moved within the loop. The process is repeated for rows 2 */

;* and 3 for pix20, pix21 and pix30 and pix31l respectively. *5
* *
pix12 = *IN1++;

pix13 = *INL1++;

pix22 = *IN2++;

pix23 = *IN2++;

pix32 = *IN3++;

pix33 = *IN3++;

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

TlReveoperonerence Optimized C Code

Connecting Real People with Real Solutions

for (j =count; j>0; j--)

pix1l0 = pix12; pixll = pix13; pixl2 = *IN1++; pixl3 = *IN1++;
pix20 = pix22; pix21 = pix23; pix22 = *IN2++; pix23 = *IN2++;
pix30 = pix32; pix31 = pix33; pix32 = *IN3++; pix33 = *IN3++;

sumOO0 = ((pix10*mask10) + (pixll*maskll) + (pix12*mask12));
suml1l = ((pix20*mask20) + (pix21*mask21l) + (pix22*mask22));
sum22 = ((pix30*mask30) + (pix31*mask3l) + (pix32*mask32));

sumO = (sumO0 + sumll + sum22) >> shift;
if (sumO0 < 0) sumO0 = 0;
iIf (sumO > constant) sumO = constant;

*QUT++ = sumo:;

sumOO0 = ((pix11*mask10)+(pix12*mask11)+(pix13*mask12));
sumll = ((pix21*mask20)+(pix22*mask21)+(pix23*mask?22));
sum22 = ((pix31*mask30)+(pix32*mask31)+(pix33*mask32));

suml = (sumO00 + sumll + sum22) >> shift;
if (suml<0) suml = 0;
if (suml > constant) suml = constant;

*OUT++ = suml;

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

SOFTWARE PIPELINE INFORMATION

Loop source line

Loop opening brace source line
Loop closing brace source line
Known Minimum Trip Count

Known Max Trip Count Factor

Loop Carried Dependency Bound(®?)
Unpartitioned Resource Bound
Partitioned Resource Bound(*)
Resource Partition:

@

A-side
.L units 3
.S units 3
.D units 4
-M units 10
.X cross paths 10
.T address paths 3
Long read paths 0
Long write paths 0
Logical ops (-LS) 0
Addition ops (-LSD) 11
Bound(.L .S .LS) 3
Bound(.L .S .D .LS .LSD) 7

$ ok b % bk ok b % b K b kb b ok bk F ko F % ok F F ¥

REAL WORLD SIGNAL

PROCESGSING

COMPILER REPORT FOR
OPTIMIZED C CODE

(.L or .S unit)
(.L or .S or .D unit)

(el) eolelelé)

Searching for software pipeline schedule at ...
il = 12 Schedule found with 4 iterations in parallel

¥ TEXAS INSTRUMENTS

Tl

Connecting Real People with Real Solutions

Developer CONTErence o\ o ep ANALYSIS OF OPTIMIZED C CODE

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

18 multiplies are performed in 12 cycles to achieve a performance of 1.5
cycles/output pixel.

Remember optimal means 1.125 cycles/output pixel.

q@ This requires the use of wider loads using double words and the 8 bit
multiply instructions of the C64x.

This requires intrinsics or serial assembly.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl{Developer Conference INTRINSIC C CODE

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

mask00 = mask[0]; maskOl = mask[1]; mask02 = mask[2] ;
mask1l0 = mask[3]; maskll = mask[4]; maskl2 = mask[5];
mask20 = mask[6]; mask2l = mask[7]; mask22 = mask[8] ;
m%‘ hOOword = _pack2(mask00, mask00);
hOlword = pack2(mask01l, mask01);
hO2word = pack2(mask02, mask02);
hOOword = _packl4(hOOword, hOOword);
J@L. hOlword = _packl4(hOlword, hOlword);
hO2word = packl4(hO2word, hO2word) ;
10_dwordO = memd8 const(IN1);
qm 11 dword0 = _memd8 const(IN2);
1= 12 _dwordO = memd8 _const(IN3);
IN1 += 1;
IN2 += 1;
IN3 += 1;
10_dwordl = _memd8_const(INl);
11 dwordl = memd8 const(IN2);
12 _dwordl = memd8 _const(IN3);
IN1 += 1;
IN2 += 1;
IN3 += 1;
10_dword?2 = memd8 const(IN1);
11 dword2 = memd8 _const(IN2);
12 _dword2 = memd8 const(IN3);
IN1 += 6;
IN2 += 6;
IN3 += 6;

REAL WORLD SIGNAL PROCESSIN {{'}TEXASINSTRUMENTS

Tl|Developer Conference INTRINSIC C CODE

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

line00 = 1o(10 dwordoO);
line01 = hi(1l0 dword0);
linel0 = 1lo(ll dwordO);
@] linell = _hi(11l dwordo0) ;
line20 = 1lo (12 dwordo0);
line2l = hi(l2 dword0);
J@L line02 = 1lo(l0 dwordl);
line03 = hi(l0 dwordl);
#if O
154 linel2 = 1lo(l1l dwordl);
linel3 = hi(ll dwordl);
#endif
line22 = 1lo(l2 dwordl);
line23 = hi(l2 dwordl);
line04 = 1lo(l10 dword2);
line05 = hi(l0 dword2);
linel4 = 1lo(ll dword2);
linel5 = hi(ll dword2);
line24 = 1lo(l2 dword2);
line25 = hi(l2 dword2);
#if 1
linel2 = shrmb(linell, linel0);
linel3 = shlmb(linel4, linel5);
#endif

D SIGNAL PROCESSIN w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

INTRINSIC C CODE

Connecting Real People with Real Solutions

prodA d0 = mpysu4 (hOOword, 1line0O0) ;
prodA dl1 = mpysu4 (hOOword, lineOl);
prodA d2 = mpysu4 (hOlword, line02);
prodA d3 = mpysu4 (hOlword, 1line03);
prodA d4 = mpysu4 (hO2word, line04);
prodA d5 = mpysu4 (h0O2word, line05);
prodAo = lo(prodA d0);
prodAl = hi(prodA d0);
prodA2 = lo(prodA d41);
prodA3 = hi(prodaA dl);
prodA4 = lo(prodA d4d2);
prodA5 = hi(prodA d4d2);
prodAé = lo(prodaA d3);
prodA7 = hi(prodA d3);
prodAs8 = lo(prodA d4);
prodAS = hi(prodA d4);
prodAA = lo(prodA d4d5);
prodAB = hi(prodA d5);

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

ta 01
tbh 01
tc 01
sum_ a0l
sum _b01
sum_cO01
sum_t01
sum_ o001

pix 01
pix_23
pix_45
pix_67

out_wordO
out _wordl
out dO

memd8(0OUT)

ouT

REAL WORLD

SI1GNAL

Intrinsic C Code

add2(prodAO0,
_add2(prodBO,
_add2(prodCo,
_add2(ta_01,

_add2(tb_01,

_add2(tc_01,

_add2(sum_a01,
_add2(sum_cO01,
_shr2(sum_o01,
_shr2(sum_o023,
_shr2(sum_o45,
_shr2(sum o067,

_spackud4(pix_23,
_spacku4(pix_67,
_1tod(out_wordl,

= out_dO;
+= 8;

prodA4) ;
prodB4) ;
prodC4);
prodA8) ;
prodB8) ;
prodC8) ;
sum_b01);
sum_t01);

shift);
shift);
shift);
shift);

pix_01);
pix_45);
out_wordO);

PROCESGSING

¥ TEXAS INSTRUMENTS

Tl{Developer Conference COMPILER ANALYSIS FOR INTRINSIC C

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

SOFTWARE PIPELINE INFORMATION

Loop source line : 284
Loop opening brace source line - 285
Loop closing brace source line : 514
Known Minimum Trip Count 1
Known Max Trip Count Factor 1
Loop Carried Dependency Bound(®) : 2
Unpartitioned Resource Bound -9
Partitioned Resource Bound(*) - 10
Resource Partition:

A-side B-side
units
units
units
units
Cross paths
address paths
Long read paths
Long write paths
Logical ops (-LS)
Addition ops (-LSD)
Bound(.L .S .LS)
Bound(-L .S .D .LS .LSD) 9 10*

—|><§U(DI_

(.L or .S unit)
(.L or .S or .D unit)

=
WOFROOWOVWOVOWUIO

N
NOFRPOOO~NOONO

Searchlng for software pipeline schedule at ...
i1 = 10 Schedule found with 4 iterations in parallelh

$ ok b % bk ok b % bk bk ok b ok bk F ko F % o Kk F F ¥

72 multiplies in 10 cycles for 8 output pixels to achieve 10/8 = 1.25
cycles/output pixel.

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl

Developer Conference

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Convolution3x3 for a row of 480 pixels.

Natural | Optimized Intrinsic Serial Hand
< C C Assembly Assembly
2934 2934 655 581 581
6.1 6.1 cycles/ | 1.36 cycles/ 1.21 1.21
cycles/o output output cycles/ cycles/
utput output output

PROCESGSING

wi? TEXAS INSTRUMENTS

REAL

W ORLD

SI1GNAL

TI{Developer Conference Lab 2: Threshold

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

Connecting Real People with Real Solutions

Thrgt2max:

K-

for (i = 0; < pixels; i++)
Eg out data[i] = in datal[i] > threshold ? 255 : in datalil;

Thrgt2thr:
J@L for (i = 0; i < pixels; i++)

out data[i] = in datal[i] > threshold? threshold:in datalil;
i@ Thrle2min:

for (1 = 0; i < pixels; i++)
out data[i] = in data[i] <= threshold ? 0 : in datalil;

@ Thriezthr:
for (1 = 0; i < pixels; i++)
out data[i] = in data[i] <= threshold ? threshold : in datalil;

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl

Connecting Real People with Real Solutions

Developer Conference C64x SIMD Instructions

February 18-20, 2004 = Houston, TX = Westin Galleria Hotel

THRGT2MAX
for (i = 0; 1 < pixels; 1 += 4)
{
p3p2plp0 = amemd const(&in_datafi]);
x3x2x1x0 = xpnd4(_cmpgtud(p3p2plp0, thththth));
_amem4(&out _datafi]) = p3p2plp0 | x3x2x1x0;

}

THRGT2THR

for (1 = 0; 1 < pixels; 1 += 4)

_amem4(&out _datafi]) =
_minu4(_amem4_const(&in_data[i]), thththth);

Can you guess the sequence of i1nstructions for thrile2min
and thrile2thr ?

Can you analyze the complexity and throughput of these
algorithms?

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

Tl|Developer Conference
February 18-20, 2004 = Houston, TX = Westin Galleria Hotel SYSTE M OPTI M IZATI ON

Connecting Real People with Real Solutions

Balance processing, transfer times and interrupt thresholds.

External
L1 Data |« L2
4—
¥ > Memory
CPU «——1 Working
Q@ Cache
D controller Set
< L1 <
Program
DMA 16K
controller |

REAL WORLD SIGNAL PROCESSING. w3 TEXAS INSTRUMENTS

	Software Optimization Workshop for Real Time Video Applications
	COURSE ABSTRACT
	Why do we need to optimize?
	What does Optimum Mean
	How do we determine the Optimum
	SOFTWARE PIPELINING
	Code Optimization Goals
	Code Optimization Methodology
	Code Optimization Methodology
	Code Optimization Methodology
	EXAMPLES IN THIS CLASS
	Minimum Absolute Difference (8x8)
	Natural C Code for mad_8x8
	Analysis Of Optimal Implementation of mad_8x8 for C64x DSP
	Analysis Of Optimal Implementation of mad_8x8 for C64x DSP
	Assembly code for Natural C Code
	Analysis Of Optimal Implementation of mad_8x8 for C64x DSP
	MAD_8x8 Performance Summary for (64x32)
	Put Bits, Variable Length Encoding
	Put Bits, Variable Length Encoding
	Put Bits: Variable Length Encoding, Complexity Analysis
	Put Bits: Variable Length Encoding, Complexity Analysis
	Optimized Put Bits Routine
	3 cycle loop for put bits.
	Get Bits, Inverse of Put Bits
	Get Bits: Function to Mimic Variable Length Decoding
	Get Bits: Function to Mimic Variable Length Decoding
	Compiler Analysis for Natural C code
	Assembly Code From C for Get Bits/VLD 5 cycle loop
	Optimized C Code for get bits/VLD
	COMPILER ANALYSIS OF OPTIMIZED C CODE
	VLD: Further Optimizations
	
	GET BITS COMPLEXITY ANALYSIS
	Scheduled Code for Get Bits
	CONVOLUTION: 3x3LAB - 1
	CONVOLUTION 3x3
	CONVOLUTION 3x3, Natural C Code
	Analysis of Convolution Algorithm
	Analysis of Convolution Algorithm
	Optimized C Code
	Optimized C Code
	COMPILER REPORT FOR OPTIMIZED C CODE
	COMPILER ANALYSIS OF OPTIMIZED C CODE
	INTRINSIC C CODE
	INTRINSIC C CODE
	INTRINSIC C CODE
	Intrinsic C Code
	COMPILER ANALYSIS FOR INTRINSIC C
	Convolution3x3 for a row of 480 pixels.
	Lab 2: Threshold
	C64x SIMD Instructions

