
February 15, 2005 Slide 1

“Flying-Adder” Frequency and
Phase Synthesis Architecture

Liming XIU
Texas Instruments Inc, HPA/DAV

01/30/2005

February 15, 2005 Slide 2

What is it?

An novel frequency synthesis architecture that
takes a digital value and generates a signal of
requested frequency (and phase).

..0100101...

f (Hz)

Continued

February 15, 2005 Slide 3

Background Material
This presentation is based on five papers:

• IEEE Journal of Solid-State Circuit, 06/2000, “An Architecture of High
Performance Frequency and Phase Synthesis”.

• IEEE Trans. on VLSI, 10/2002, “A ‘Flying-Adder’ Architecture of
Frequency and Phase Synthesis with Scalability”.

• IEEE Trans. on Circuit & System II, 03/2003, “A New Frequency
Synthesis Method based on ‘Flying-Adder’ Architecture”.

• IEEE Journal of Solid-State Circuit, 03/2004, “A Novel All Digital Phase
Lock Loop with Software Adaptive Filter”.

• IEEE Trans. on VLSI, 02/2005, “A ‘Flying-Adder’ Frequency Synthesis
Architecture of Reducing VCO Stages”.

February 15, 2005 Slide 4

History

• Started in late 1998, MSP/Video Group.

• Being continuously refined/improved.

• Thanks to Hugh Mair

February 15, 2005 Slide 5

Presentation Outline

•• The principal IdeaThe principal Idea

• Implementation: First Generation

• Implementation: Second Generation

• Integer-Flying-Adder Architecture

February 15, 2005 Slide 6

Principal Idea
Using multiple equally-spaced phases generated from a
VCO to synthesis various frequency and phase, by
triggering the flip-flops at predestined time.

Frequency and Phase
Control Word

FREQUENCY AND PHASE
SYNTHESIZER

PFD CHARGE
PUMP VCO

DIVIDER

Reference

Z

Z_SHIFT

N

Continued

Filter

February 15, 2005 Slide 7

Principal Idea, continued

Continued

VCO Output waveforms, for N=32

VCOOUT[30]

VCOOUT[3]

VCOOUT[2]

VCOOUT[1]

VCOOUT[0]

VCOOUT[31]

February 15, 2005 Slide 8

Principal Idea, continued

ZVCOOUT
<31:0>

10-bit
Adder

10-bit Reg

FREQ<9:0>

1 23

1 2 3

32 to 1
MUX D

Q'

Q

Continued

Triggering the flip-flop at predestined time to generate the
desired frequency, by utilizing the multiple VCO outputs.

@ f Hz

February 15, 2005 Slide 9

Numerical Example

Continued

VCO running at 156.25 MHz (6.4 ns)

=> ∆ = 6.4/32 = 0.2 (ns)

Wanted: 204.08 MHz, or T = 4.9 ns

=> FREQ[9:0] = T/(2∆) = 4.9/0.4 = 12.25 = 01100.01000b

Integer portion is used for selecting tick, fractional portion is
for error accumulation.

February 15, 2005 Slide 10

Numerical Example, continued

0
00000

12
01100

24
11000

4
00100

17
10001

29
11101

 00000.00000
+ 01100.01000

01100.01000

 01100.01000
+ 01100.01000

11000.10000

 11000.10000
+ 01100.01000

00100.11000

 00100.11000
+ 01100.01000

10001.00000

 10001.00000
+ 01100.01000

11101.01000

12 12 13 1212

February 15, 2005 Slide 11

Key Facts
• VCO has to be in multiple-delay-stages style, single-ended or differential.

• The PLL/VCO is running at a fixed frequency, no loop dynamic responds
requirement.

• Output frequency range, theoretically: (1/2)fvco <= fout <= (N/2)fvco

• In practice, the high-frequency is limited by the speed of the process in
which this architecture is implemented.

• Has inherent jitter if fractional bits are used.

• Frequency resolution (step): 2**2 fkf ∆−−=δ

February 15, 2005 Slide 12

Inherent Jitter
rMTFREQor

FREQT
+=∆=

∆=
/,

*

∆+=
∆=

*)1(
*

MT
MT

l

s

rPP
rP

ls

l

−=−=
=

11

∆=−=− slpkpk TTJ

0)()(=−+−= TTPTTPJ ssllmean

222)()(rrTTPTTPJ
ssllrms −∆=−+−=

February 15, 2005 Slide 13

Output frequency vs. FREQ
(an example)

February 15, 2005 Slide 14

Frequency divider and “Phase
divider”

• To generate frequencies, divider can be used. But
divider ratio has to be integer → available
frequencies are limited.

• “Flying-Adder” architecture can be viewed as
“phase divider” which provides additional level of
frequency divide → more available frequencies.

February 15, 2005 Slide 15

Presentation Outline

• The principal Idea

•• Implementation: First GenerationImplementation: First Generation

• Implementation: Second Generation

• Integer-Flying-Adder Architecture

February 15, 2005 Slide 16

Implementation: Problems

ZVCOOUT
<31:0>

10-bit
Adder

10-bit Reg

FREQ<9:0>

1 23

1 2 3

32 to 1
MUX D

Q'

QTwo problems:

•The glitch of the MUX

•The speed of the adder

February 15, 2005 Slide 17

The Glitch of the MUX
IN0
IN1
IN2

IN31

Z

Sel[4:0]

IN0, “00000”

IN21, “10101”

IN31, “11111”

Z

Z’
t

February 15, 2005 Slide 18

Implementation: Two Paths

Continued

FREQ_B<4:0>

Z

10-bit
Adder

5-bit
Adder

5-bit
Reg

10-bit Reg

VCOOUT
<31:0>

FREQ_A<9:0>

PATH_B

PATH_A

CLK1

CLK2

D

Q'

Q

D

Q'

Q

February 15, 2005 Slide 19

Implementation: Two Paths

Continued

Solved the glitch problem: the two paths are interlocked

CLK2

CLK1

Path_A blocked

MUX_A decoding

Path_B open

MUX_B stable

Path_A open

MUX_A stable

Path_B blocked

MUX_B decoding

February 15, 2005 Slide 20

Implementation: Two Paths

Continued

Relaxed the constrain on adders => double the circuit speed
One path generates the rising edge, the other for falling edge

Path A

Path B

Path A

Path B

Accumulator in Path A

Accumulator in Path B

February 15, 2005 Slide 21

Implementation: Two Paths
This two paths architecture solved the previous two problems, but
created a new problem:

the synchronization of the two paths.
In other words, MUX_A and MUX_B’s address values are
unrelated => duty cycle is uncontrollable.

Path A

Path B

Path A

Location unknown
Depend on initial value

February 15, 2005 Slide 22

Implementation: Synchronized

Continued

FREQ_B<4:0>

Z

10-bit
Adder

5-bit
Adder

5-bit
Reg

10-bit Reg

VCOOUT
<31:0>

FREQ_A<9:0>

PATH_B

PATH_A

CLK1

CLK2

D

Q'

Q

D

Q'

Q

February 15, 2005 Slide 23

Implementation: Synchronized
Now MUX_B’s address is related to MUX_A’s
New problem: Adder in PATH_B doesn’t have full cycle to

work

Path A

Path B

Path A

Path B

Accumulator in Path A

Adder in Path B

February 15, 2005 Slide 24

Implementation: Pipelined

Continued

FREQ<10:6>

Z
VCOOUT

<31:0>

PATH_B

PATH_A

CLK1

CLK2

10-bit
Adder

10-bit Reg

FREQ<9:0>

5-bit
Reg

5-bit
Reg

5-bit
Adder

5-bit
Reg

t1

t2

t3 t4

t5 t6

D

Q'

Q

D

Q'

Q

February 15, 2005 Slide 25

Implementation: Pipelined
• Now both the accumulator in PATH_A and the adder in

PATH_B have full cycle to work.
• Timing constrain: see below

a cb

bctttt
abtttt

∆≤++
∆≤++

654
321

February 15, 2005 Slide 26

Implementation: First Generation
First generation development history:
• One Path
• Two Paths
• Synchronized
• Pipelined

Key features of this architecture:
• interlocking between paths
• self-clocking
• pipeline

February 15, 2005 Slide 27

Summary: The Advantages
•The output frequency can be changed instantly without any dynamic
process.

•With enough fraction bits, any frequency within certain range can be
generated with any accuracy.

•Phase shift version of the output signal can be generated.

•Output signal with various duty cycle can be generated.

•Since VCO running at fixed frequency, VCO and PLL design are much
simplified, the PLL is much robust against temperature draft, process and
voltage variation.

•The ‘increment’ value can be modulated to produce a highly accurate and
predictable spread spectrum clock source.

February 15, 2005 Slide 28

Phase Synthesis: The idea

Continued

Z

VCOOUT
<31:0>

10-bit
Adder

10-bit Reg

FREQ<9:0>

32 to 1
MUX

5-bit Reg

PHASE<4:0>

32 to 1
MUX

5-bit
Adder

Z_SHIFT

FREQ_GEN

PHASE_GEN

D

Q'

Q

D

Q'

Q

February 15, 2005 Slide 29

Phase Synthesis: The idea
• The MUX address used in PHASE_GEN is the sum of the

MUX_A’s address and PHASE[4:0]
• The data used in DFF of PHASE_GEN is the same as data

used in FREQ_GEN
• The Z_SHIFT is a delay version of Z. The delay amount:

PHASE[4:0] *∆

Z

Z_SHIFT

∆= *]0:4[PHASEϕ

February 15, 2005 Slide 30

Phase Synthesis: Implementation

FREQ<32:27>

5-bit
Adder

>=31?

'0'

'1'

32-bit
Adder

<5:0>

<
4
:0

>

5-bit
Adder

>=31?

'0'

'1'

32-bit
Adder

<5:0>

<
4
:0

>

5-bit
Reg

5-bit
Reg

Z_SHIFT
VCOOUT

<30:0>

PATH_B_SHIFT

PATH_A_SHIFT

5-bit
Reg

5-bit
Adder

>=31?

'0'

'1'

32-bit
Adder

<5:0>

<
4
:0

>

5-bit
Reg

5-bit
Reg

DFTOUT_UP

DFTOUT_LOW

L
O

W
_
T

O
_
U

P
<

4
:0

>

PHASE<4:0>

D

Q'

Q

D

Q'

Q

February 15, 2005 Slide 31

Phase Synthesis: Problems

Problems:
• “Dead-zone”
• “Dual-stability”

February 15, 2005 Slide 32

Presentation Outline

• The principal Idea

• Implementation: First Generation

•• Implementation: Second GenerationImplementation: Second Generation

• Integer-Flying-Adder Architecture

February 15, 2005 Slide 33

Second Generation Architecture

The new architecture:

• the operating speed is greatly improved.
• has scalability for higher output frequency.
• has an internal node whose frequency is higher

than that of the synthesized output.
• eliminates the “dead-zone” and “dual-stability”

for phase synthesis.
Continued

February 15, 2005 Slide 34

Second Generation Architecture

CLK2

CLK1
D Q

CLK

CLK1

CLK1

CLK2

CLK2

CLK2

+

+

TRIGGER

FREQ<31:0>

FREQ<32:28>

EN

EN

32 Bits

5 Bits

5 Bits

5 Bits

VCOOUT<31:0>

32

5

0

1

FREQ<10:6>

Z
Q

QSET

CLR

D

Q

Q

SET

CLRD

VCOOUT
<31:0>

PATH_B

PATH_A

CLK1

CLK2

10-bit
Adder

10-bit Reg

FREQ<9:0>

5-bit
Reg

5-bit
Reg

5-bit
Adder

5-bit
Reg

t1

t2
t3 t4

t5 t6

Continued

February 15, 2005 Slide 35

Sec. Gen. Arch.: Scalability

Continued
+

+ + +

CLK
CNTL D Q

CLK

CLK
2

CLK
1
CLK
3CLK
4

CLK
1

CLK
1

CLK
1

CLK
1

CLK
1

CLK
2

CLK
3

CLK
4

FREQ[31:0
] FREQ[33:29]

FREQ[32:28]+
FREQ[33:29]

FREQ [32:28]+
FREQ[27]

MUX
1

MUX
2

MUX
3

MUX
4

MUX
5

REG
1

REG
4

REG
3

REG
2

TRIGGER

SEL2 SEL3 SEL4SEL1

Tick[31:0]

Z

SEL5

ADDER
4

ADDER
3

ADDER
2ADDER

1

February 15, 2005 Slide 36

Sec. Gen. Arch.: Scalability

Continued

• Multiple paths (more than two) to relax the constrains
on adders further -> higher output frequency

February 15, 2005 Slide 37

Sec. Gen. Arch.: Scalability
• The clocks signals and the mechanism of interlocking

01
M U X 2

10
M U X 4

01
M U X 2

10
M U X 4

01
M U X 2

00
M U X 1

11
M U X 3

00
M U X 1

11
M U X 3

2 3 4 5 6 7 8 9 10 11 121

C LK 1

C LK 2

C LK 3

C LK 4

Z and
SE L5[1:0]

11
M U X 3

T R IG G E R

February 15, 2005 Slide 38

Sec. Gen. Arch.: Phase Synthesis

CLK2

CLK1(Z)
D Q

CLK

CLK1

CLK1

CLK2

CLK2

CLK2

+

+

TRIGGER

FREQ<31:0>

FREQ<32:28>

EN1

EN1

32 Bits

5 Bits

5 Bits

5 Bits

VCOOUT<31:0>

0

0

1 0

1

1

INIT1

INIT1

D Q

CLK

EN EN1

CLK2

32

5

Fig. 16. The circuitry for Z.

CLK2
’

CLK1’
(Z_SHIFT)

D Q

CLK

CLK1
’

CLK1
’

CLK2
’

CLK2
’

CLK2
’

+

+

TRIGGER

FREQ<31:0
>

FREQ<32:28>

EN2

EN2

32
Bits

5 Bits

5 Bits

5 Bits

VCOOUT<31:0>

0

0

1 0

1

1

INIT2

INIT2

D Q

CLK

EN1 EN2

CLK2
’

1

0CLK1

EN2

32

5

Fig. 17. The circuitry for Z_SHIFT

February 15, 2005 Slide 39

Presentation Outline

• The principal Idea

• Implementation: First Generation

• Implementation: Second Generation

•• IntegerInteger--FlyingFlying--Adder ArchitectureAdder Architecture

February 15, 2005 Slide 40

Integer-Flying-Adder Architecture

Issues with current architecture:
since PLL/VCO is running at a fixed frequency =>

– need fractional bits to achieve certain
frequency, -> periodic carry-in bit,

– frequency modulation of the output signal, or,
inherent jitter

Continued

February 15, 2005 Slide 41

Integer-Flying-Adder Architecture

Idea:

Make PLL programmable

Get ride of fractional bit

→ Eliminate the inherent jitter

February 15, 2005 Slide 42

Integer-Flying-Adder: Method
FREQ = T/∆ = 1/(f* ∆) = ((fin*N)/(f*P)) *M

Using two integers, FREQ and M, to approximate a real number f .
2 <= FREQ <= 2N, M1 <= M <= M2

February 15, 2005 Slide 43

Integer-Flying-Adder: Algorithm
The algorithm to search the best control parameters

error_min = very_big_number
for (M1<=M<=M2) {

freq = ((fin*N)/(f*P))*M
error = min(freq-floor(freq), ceiling(freq)-freq)
if (error < error_min) {

error_min = error
Mbest = M
if (freq – floor(freq)) < 0.5 {

FREQ = floor(freq)
}
else {

FREQ = ceiling(freq)
}

}
}

February 15, 2005 Slide 44

Integer-Flying-Adder: Error Upper-
Bound

|T-T’|/T = r*∆ /T
<= (1/2) * ((fin*N)/(f*P)) / (((fin*N)/(f*P))*M)

= 1/(2*M)
<= 1/(2*M1)

February 15, 2005 Slide 45

Integer-Flying-Adder: Error
Distribution Envelope

for (2<=F<=64) {
for (M1<=M<=M2) {

F-M-seq(index) = M/F
}

}

foreach M/F in F-M-sorted-seq(index) {
F-M_curr = M/F
p_max = 2/(F-M_curr + F-M_prev)
e_max = (F-M_curr - F-M_prev)/(F-M_curr + F

-M_prev)

F-M_prev = F-M_curr
}

ContinuedSee paper on TCASII (3th paper) for mathematical prove

February 15, 2005 Slide 46

Integer-Flying-Adder: Error
Distribution Envelope

February 15, 2005 Slide 47

Integer-Flying-Adder: Error
Distribution Envelope

The effect of M2 on the error distribution envelope

February 15, 2005 Slide 48

Integer-Flying-Adder: Summary

• Comparing to original architecture:
eliminate the inherent jitter
but the PLL loop need adjustment

• Comparing to “Integer-N”, the frequency range is
much wider.

• Comparing to “Fractional-N”, no need to
compensate the spurious signals.

February 15, 2005 Slide 49

One Application Example: All
Digital Phase Lock Loop

“flying-adder” synthesizer

All loop variables are digital
values, no analog voltage !

February 15, 2005 Slide 50

ADPLL: A New Idea

VCO

Synthesizer1

Synthesizer2

FREQ1

FREQ2

Measure
Frequency

fin

Conversion

fout

fhi

frequency of fin

Flying-adder

Known high frequency

February 15, 2005 Slide 51

ADPLL: A New Idea
• Goal: fout = N * fin
• Procedure:

– Using synthesizer1 to generate a known high frequency fhi (e.g. > 500 MHz), by
FREQ1.

– Using fhi to measure fin.(a simple counter) Get a frequency number of fin.
– Multiple this frequency number by N and convert it to FREQ2.
– Using synthesizer2 to generate the fout, by FREQ2.

• Advantage:
– fout is not directly related to fin electrically, noise in fin is isolated. PFD and filter

are not required.
– Especially good for multiplying the input frequency to a large number (N is big).
– The VCO used for flying-adder synthesizers can be a very simple one with

minimum analog complexity.
– Synthesis1 in above diagram can be a very simple one (no fractional part)

February 15, 2005 Slide 52

Conclusion

• A novel frequency synthesis
architecture is presented.

• This architecture can be used to
generate many, many frequencies.

February 15, 2005 Slide 53

F = p *M

F

F + 1

p, a required frequency

F + 1

F + 2

As M sweep
As M sweep

