THE TECHNOLOGY DIFFERENCE

"Flying-Adder" Frequency and Phase Synthesis Architecture

Liming XIU
Texas Instruments Inc, HPA/DAV

01/30/2005

THE TECHNOLOGY DIFFERENCE

What is it?

An novel frequency synthesis architecture that takes a digital value and generates a signal of requested frequency (and phase).

Continued

THE TECHNOLOGY DIFFERENCE

Background Material

 This presentation is based on five papers:- IEEE Journal of Solid-State Circuit, 06/2000, "An Architecture of High Performance Frequency and Phase Synthesis".
- IEEE Trans. on VLSI, 10/2002, "A ‘Flying-Adder’ Architecture of Frequency and Phase Synthesis with Scalability".
- IEEE Trans. on Circuit \& System II, 03/2003, "A New Frequency Synthesis Method based on 'Flying-Adder' Architecture".
- IEEE Journal of Solid-State Circuit, 03/2004, "A Novel All Digital Phase Lock Loop with Software Adaptive Filter".
- IEEE Trans. on VLSI, 02/2005, "A ‘Flying-Adder’ Frequency Synthesis Architecture of Reducing VCO Stages".
- Started in late 1998, MSP/Video Group.
- Being continuously refined/improved.
- Thanks to Hugh Mair

访 TEXAS InSTRUMENTS

 Presentation Outline

 Presentation Outline}

- The principal Idea \longleftarrow
- Implementation: First Generation
- Implementation: Second Generation
- Integer-Flying-Adder Architecture

THE TECHNOLOGY DIFFERENCE

Principal Idea

Using multiple equally-spaced phases generated from a VCO to synthesis various frequency and phase, by triggering the flip-flops at predestined time.

Continued

Principal Idea, continued

VCO Output waveforms, for $\mathrm{N}=32$

Continued

THE TECHNOLOGY DIFFERENCE

Principal Idea, continued

Triggering the flip-flop at predestined time to generate the desired frequency, by utilizing the multiple VCO outputs.

THE TECHNOLOGY
 DIFFERENCE

Numerical Example

VCO running at 156.25 MHz (6.4 ns)
$\Rightarrow \quad \Delta=6.4 / 32=0.2(\mathrm{~ns})$
Wanted: 204.08 MHz , or T = 4.9 ns
$\Rightarrow \quad$ FREQ[9:0] $=\mathrm{T} /(2 \Delta)=4.9 / 0.4=12.25=01100.01000 \mathrm{~b}$
Integer portion is used for selecting tick, fractional portion is for error accumulation.

THE TECHNOLOGY DIFFERENCE

Numerical Example, continued

THE TECHNOLOGY DIFFERENCE

Key Facts

- VCO has to be in multiple-delay-stages style, single-ended or differential.
- The PLL/VCO is running at a fixed frequency, no loop dynamic responds requirement.
- Output frequency range, theoretically: (1/2)fvco <= fout <= (N/2)fvco
- In practice, the high-frequency is limited by the speed of the process in which this architecture is implemented.
- Has inherent jitter if fractional bits are used.
- Frequency resolution (step): $\delta f=-2^{-k *} \Delta^{*} f^{2}$

THE TECHNOLOGY DIFFERENCE

Inherent Jitter

$$
\begin{aligned}
& T=F R E Q * \Delta \\
& \text { or, } F R E Q=T / \Delta=M+r \\
& T_{s}=M^{*} \Delta \\
& T_{l}=(M+1)^{*} \Delta \quad P_{l}=r \\
& J_{p k-p k}=1-P_{l}=1-r
\end{aligned}
$$

THE TECHNOLOGY DIFFERENCE

(an example)
 Output frequency vs. FREQ

THE TECHNOLOGY DIFFERENCE

Frequency divider and "Phase divider"

- To generate frequencies, divider can be used. But divider ratio has to be integer \rightarrow available frequencies are limited.
- "Flying-Adder" architecture can be viewed as "phase divider" which provides additional level of frequency divide \rightarrow more available frequencies.

, if Texas Instruments
 I NNOVATE. CREATE. MAKE
 THE TECHNOLOGY
 DIFFERENCE

 Presentation Outline

 Presentation Outline}

THE
DIFFERENCE."

- The principal Idea
- Implementation: First Generation \longleftarrow
- Implementation: Second Generation
- Integer-Flying-Adder Architecture

THE TECHNOLOGY DIFFERENCE

Implementation: Problems

THE TECHNOLOGY DIFFERENCE

The Glitch of the MUX

THE TECHNOLOGY DIFFERENCE

Implementation: Two Paths

THE TECHNOLOGY DIFFERENCE

Implementation: Two Paths

Solved the glitch problem: the two paths are interlocked

THE TECHNOLOGY DIFFERENCE

Implementation: Two Paths

Relaxed the constrain on adders => double the circuit speed One path generates the rising edge, the other for falling edge

Continued

THE TECHNOLOGY DIFFERENCE

Implementation: Two Paths

This two paths architecture solved the previous two problems, but created a new problem:
the synchronization of the two paths. In other words, MUX_A and MUX_B's address values are unrelated $\quad \Rightarrow$ duty cycle is uncontrollable.

Location unknown
Depend on initial value
Path B

THE TECHNOLOGY DIFFERENCE

Implementation: Synchronized

Implementation: Synchronized

Now MUX_B's address is related to MUX_A's
New problem: Adder in PATH_B doesn't have full cycle to work

THE TECHNOLOGY DIFFERENCE

THE TECHNOLOGY DIFFERENCE

Implementation: Pipelined

- Now both the accumulator in PATH_A and the adder in PATH_B have full cycle to work.
- Timing constrain: see below

Implementation: First Generation

First generation development history:

- One Path
- Two Paths
- Synchronized
- Pipelined

Key features of this architecture:

- interlocking between paths
- self-clocking
- pipeline

THE TECHNOLOGY
 DIFFERENCE

Summary: The Advantages

-The output frequency can be changed instantly without any dynamic process.
-With enough fraction bits, any frequency within certain range can be generated with any accuracy.
-Phase shift version of the output signal can be generated.
-Output signal with various duty cycle can be generated.
-Since VCO running at fixed frequency, VCO and PLL design are much simplified, the PLL is much robust against temperature draft, process and voltage variation.
-The 'increment' value can be modulated to produce a highly accurate and predictable spread spectrum clock source.

THE TECHNOLOGY DIFFERENCE

Phase Synthesis: The idea

THE TECHNOLOGY
 DIFFERENCE

Phase Synthesis: The idea

The MUX address used in PHASE_GEN is the sum of the MUX_A's address and PHASE[4:0]
The data used in DFF of PHASE_GEN is the same as data used in FREQ_GEN
The Z_SHIFT is a delay version of Z. The delay amount: PHASE[4:0] * Δ

THE TECHNOLOGY DIFFERENCE

Phase Synthesis: Implementation

Phase Synthesis: Problems

Problems:
"Dead-zone"
"Dual-stability"

, if Texas Instruments
 I NNOVATE. CREATE. MAKE

 THE TECHNOLOGY

 THE TECHNOLOGY DIFFERENCE

 Presentation Outline

 Presentation Outline}

THE
DIFFERENCE ."

- The principal Idea
- Implementation: First Generation
- Implementation: Second Generation \longleftarrow
- Integer-Flying-Adder Architecture

THE TECHNOLOGY
 DIFFERENCE

Second Generation Architecture

The new architecture:

- the operating speed is greatly improved.
- has scalability for higher output frequency.
- has an internal node whose frequency is higher than that of the synthesized output.
- eliminates the "dead-zone" and "dual-stability" for phase synthesis.

THE TECHNOLOGY DIFFERENCE

Second Generation Architecture

THE TECHNOLOGY DIFFERENCE

Sec. Gen. Arch.: Scalability

访 TEXAS InSTRUMENTS
 Sec. Gen. Arch.: Scalability

- Multiple paths (more than two) to relax the constrains on adders further -> higher output frequency

Continued

THE TECHNOLOGY DIFFERENCE

Sec. Gen. Arch.: Scalability

- The clocks signals and the mechanism of interlocking

THE TECHNOLOGY DIFFERENCE

Sec. Gen. Arch.: Phase Synthesis

, if Texas Instruments

 Presentation Outline

 Presentation Outline}

- The principal Idea
- Implementation: First Generation
- Implementation: Second Generation
- Integer-Flying-Adder Architecture

THE TECHNOLOGY
 DIFFERENCE

Integer-Flying-Adder Architecture

Issues with current architecture: since PLL/VCO is running at a fixed frequency =>

- need fractional bits to achieve certain frequency, -> periodic carry-in bit,
- frequency modulation of the output signal, or, inherent jitter

Continued

THE TECHNOLOGY DIFFERENCE

Integer-Flying-Adder Architecture

Idea:

Make PLL programmable

Get ride of fractional bit
\longrightarrow Eliminate the inherent jitter

THE TECHNOLOGY DIFFERENCE

Integer-Flying-Adder: Method

$$
F R E Q=T / \Delta=1 /\left(f^{*} \Delta\right)=\left(\left(f_{i n}{ }^{*} N\right) /\left(f^{*} P\right)\right) * M
$$

Using two integers, $F R E Q$ and M, to approximate a real number f. $2<=F R E Q<=2 N, M 1<=M<=M 2$

THE TECHNOLOGY DIFFERENCE

Integer-Flying-Adder: Algorithm

The algorithm to search the best control parameters

```
error_min = very_big_number
for ( }\mp@subsup{M}{1}{}<==M<=\mp@subsup{M}{2}{})
    freq = ((fin*N)/(f*P))*M
    error = min( freq-floor(freq), ceiling(freq)-freq )
    if (error < error_min ) {
        error_min = error
        M
        if (freq - floor(freq)) < 0.5 {
                        FREQ = floor(freq)
        }
        else {
            FREQ = ceiling(freq)
```

 \}
 \}
 \}

THE TECHNOLOGY DIFFERENCE

Integer-Flying-Adder: Error UpperBound

$$
\begin{gathered}
\left|T-T^{\prime}\right| T=r^{*} \Delta / T \\
<=(1 / 2) *\left(\left(f i^{*} N\right) /\left(f{ }^{*} P\right)\right) /\left(\left((f i n * N) /\left(f^{*} P\right)\right) * M\right) \\
\left.=1 /\left(2^{*}\right)^{*}\right) \\
<=1 /\left(2^{*} M_{1}\right)
\end{gathered}
$$

THE TECHNOLOGY DIFFERENCE

Integer-Flying-Adder: Error Distribution Envelope

```
for (2<=F<=64) {
    for (M1<=M<=M}\mp@subsup{M}{2}{})
        F-M-seq(index) = M/F
    }
}
foreach M/F in F-M-sorted-seq(index) {
        F-M_curr = M/F
    p_max = 2/(F-M_curr + F-M_prev)
    e_max = (F-M_curr - F-M_prev)/( F-M_curr +1
    F-M_prev = F-M_curr
}
```


See paper on TCASII (3th paper) for mathematical prove

THE TECHNOLOGY DIFFERENCE

Integer-Flying-Adder: Error Distribution Envelope

Frequency Error Distribution

THE TECHNOLOGY DIFFERENCE

Integer-Flying-Adder: Error Distribution Envelope

The effect of $M 2$ on the error distribution envelope

THE TECHNOLOGY
 DIFFERENCE

Integer-Flying-Adder: Summary

- Comparing to original architecture:
$>$ eliminate the inherent jitter
$>$ but the PLL loop need adjustment
- Comparing to "Integer-N", the frequency range is much wider.
- Comparing to "Fractional-N", no need to compensate the spurious signals.

THE TECHNOLOGY DIFFERENCE

One Application Example: All Digital Phase Lock Loop

THE TECHNOLOGY DIFFERENCE

ADPLL: A New Idea

THE TECHNOLOGY DIFFERENCE

ADPLL: A New Idea

- Goal: fout $=N$ * fin
- Procedure:
- Using synthesizer1 to generate a known high frequency fhi (e.g. > 500 MHz), by FREQ1.
- Using fhi to measure fin.(a simple counter) Get a frequency number of fin.
- Multiple this frequency number by N and convert it to FREQ2.
- Using synthesizer2 to generate the fout, by FREQ2.
- Advantage:
- fout is not directly related to fin electrically, noise in fin is isolated. PFD and filter are not required.
- Especially good for multiplying the input frequency to a large number (N is big).
- The VCO used for flying-adder synthesizers can be a very simple one with minimum analog complexity.
- Synthesis1 in above diagram can be a very simple one (no fractional part)

Conclusion

- A novel frequency synthesis architecture is presented.
- This architecture can be used to generate many, many frequencies.

THE TECHNOLOGY DIFFERENCE

F = p * M

