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What is it? 

An novel frequency synthesis architecture that 
takes a digital value and generates a signal of 
requested frequency (and phase). 
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Background Material
This presentation is based on five papers:

• IEEE Journal of Solid-State Circuit, 06/2000, “An Architecture of High 
Performance Frequency and Phase Synthesis”.

• IEEE Trans. on VLSI, 10/2002, “A ‘Flying-Adder’ Architecture of 
Frequency and Phase Synthesis with Scalability”.

• IEEE Trans. on Circuit & System II, 03/2003, “A New Frequency 
Synthesis Method based on ‘Flying-Adder’ Architecture”.

• IEEE Journal of Solid-State Circuit, 03/2004, “A Novel All Digital Phase 
Lock Loop with Software Adaptive Filter”.

• IEEE Trans. on VLSI, 02/2005, “A ‘Flying-Adder’ Frequency Synthesis 
Architecture of Reducing VCO Stages”.
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History

• Started in late 1998, MSP/Video Group.

• Being continuously refined/improved.

• Thanks to Hugh Mair
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Presentation Outline

•• The principal IdeaThe principal Idea

• Implementation: First Generation

• Implementation: Second Generation

• Integer-Flying-Adder Architecture
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Principal Idea
Using multiple equally-spaced phases generated from a 
VCO to synthesis various frequency and phase, by 
triggering the flip-flops at predestined time.

Frequency and Phase
Control Word

FREQUENCY AND PHASE
SYNTHESIZER

PFD CHARGE
PUMP VCO

DIVIDER

Reference

Z

Z_SHIFT

N

Continued

Filter
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Principal Idea, continued

Continued

VCO Output waveforms, for N=32

VCOOUT[30]

VCOOUT[3]

VCOOUT[2]

VCOOUT[1]

VCOOUT[0]

VCOOUT[31]
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Principal Idea, continued

ZVCOOUT
<31:0>

10-bit
Adder

10-bit Reg

FREQ<9:0>

1 23

1 2 3

32 to 1
MUX D

Q'

Q

Continued

Triggering the flip-flop at predestined time to generate the 
desired frequency, by utilizing the multiple VCO outputs.

@ f Hz
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Numerical Example

Continued

VCO running at 156.25 MHz (6.4 ns) 

=> ∆ = 6.4/32 = 0.2 (ns)

Wanted: 204.08 MHz, or T = 4.9 ns

=> FREQ[9:0] = T/(2∆) = 4.9/0.4 = 12.25 = 01100.01000b

Integer portion is used for selecting tick, fractional portion is 
for error accumulation.
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Numerical Example, continued
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Key Facts 
• VCO has to be in multiple-delay-stages style, single-ended or differential. 

• The PLL/VCO is running at a fixed frequency, no loop dynamic responds 
requirement. 

• Output frequency range, theoretically:  (1/2)fvco <= fout <= (N/2)fvco

• In practice, the high-frequency is limited by the speed of the process in 
which this architecture is implemented.

• Has inherent jitter if fractional bits are used.

• Frequency resolution (step): 2**2 fkf ∆−−=δ
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Inherent Jitter 
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Output frequency vs. FREQ 
(an example)
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Frequency divider and “Phase 
divider”

• To generate frequencies, divider can be used. But 
divider ratio has to be integer → available 
frequencies are limited.

• “Flying-Adder” architecture can be viewed as 
“phase divider” which provides additional level of 
frequency divide → more available frequencies.
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Presentation Outline

• The principal Idea

•• Implementation: First GenerationImplementation: First Generation

• Implementation: Second Generation

• Integer-Flying-Adder Architecture
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Implementation: Problems

ZVCOOUT
<31:0>

10-bit
Adder

10-bit Reg

FREQ<9:0>

1 23

1 2 3

32 to 1
MUX D

Q'

QTwo problems:

•The glitch of  the MUX 

•The speed of the adder
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The Glitch of the MUX
IN0
IN1
IN2

IN31

Z

Sel[4:0]

IN0, “00000”

IN21, “10101”

IN31, “11111”

Z

Z’
t
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Implementation: Two Paths

Continued

FREQ_B<4:0>

Z

10-bit
Adder

5-bit
Adder

5-bit
Reg

10-bit Reg

VCOOUT
<31:0>

FREQ_A<9:0>

PATH_B

PATH_A

CLK1

CLK2

D

Q'

Q

D

Q'

Q
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Implementation: Two Paths

Continued

Solved the glitch problem: the two paths are interlocked

CLK2

CLK1

Path_A blocked

MUX_A decoding

Path_B open

MUX_B stable

Path_A open

MUX_A stable

Path_B blocked

MUX_B decoding
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Implementation: Two Paths

Continued

Relaxed the constrain on adders => double the circuit speed
One path generates the rising edge, the other for falling edge

Path A

Path B

Path A

Path B

Accumulator in Path A

Accumulator in Path B
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Implementation: Two Paths
This two paths architecture solved the previous two problems, but 
created a new problem: 

the synchronization of the two paths. 
In other words, MUX_A and MUX_B’s address values are 
unrelated => duty cycle is uncontrollable.

Path A

Path B

Path A

Location unknown
Depend on initial value
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Implementation: Synchronized

Continued

FREQ_B<4:0>

Z
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Reg
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PATH_B

PATH_A
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Implementation: Synchronized
Now MUX_B’s address is related to MUX_A’s
New problem:   Adder in PATH_B doesn’t have full cycle to 

work

Path A

Path B

Path A

Path B

Accumulator in Path A

Adder in Path B
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Implementation: Pipelined

Continued

FREQ<10:6>

Z
VCOOUT
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PATH_B
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Q'
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Implementation: Pipelined
• Now both the accumulator in PATH_A and the adder in 

PATH_B have full cycle to work.
• Timing constrain: see below

a cb

bctttt
abtttt

∆≤++
∆≤++

654
321
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Implementation: First Generation
First generation development history:
• One Path
• Two Paths
• Synchronized
• Pipelined

Key features of this architecture:
• interlocking between paths
• self-clocking
• pipeline
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Summary: The Advantages
•The output  frequency can be changed instantly without any dynamic 
process.

•With enough fraction bits, any frequency within certain range can be 
generated with any accuracy.

•Phase shift version of the output signal can be generated.

•Output signal with various duty cycle can be generated.

•Since VCO running at fixed frequency, VCO and PLL design are much 
simplified, the PLL is much robust against temperature draft, process and 
voltage variation.

•The ‘increment’ value can be modulated to produce a highly accurate and 
predictable spread spectrum clock source.
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Phase Synthesis: The idea

Continued

Z
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Phase Synthesis: The idea
• The MUX address used in PHASE_GEN is the sum of the 

MUX_A’s address and PHASE[4:0]
• The data used in DFF of PHASE_GEN is the same as data 

used in FREQ_GEN
• The Z_SHIFT is a delay version of Z. The delay amount: 

PHASE[4:0] *∆

Z

Z_SHIFT

∆= *]0:4[PHASEϕ
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Phase Synthesis: Implementation
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Phase Synthesis: Problems

Problems:
• “Dead-zone”
• “Dual-stability”
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Presentation Outline

• The principal Idea

• Implementation: First Generation

•• Implementation: Second GenerationImplementation: Second Generation

• Integer-Flying-Adder Architecture
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Second Generation Architecture

The new architecture:

• the operating speed is greatly improved.
• has scalability for higher output frequency.
• has an internal node whose frequency is higher

than that of the synthesized output.
• eliminates the “dead-zone” and “dual-stability” 

for phase synthesis.
Continued
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Second Generation Architecture
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Continued
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Sec. Gen. Arch.: Scalability

Continued
+
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Sec. Gen. Arch.: Scalability

Continued

• Multiple paths (more than two) to relax the constrains 
on adders further  -> higher output frequency
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Sec. Gen. Arch.: Scalability
• The clocks signals and the mechanism of interlocking
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Sec. Gen. Arch.: Phase Synthesis
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Presentation Outline

• The principal Idea

• Implementation: First Generation

• Implementation: Second Generation

•• IntegerInteger--FlyingFlying--Adder ArchitectureAdder Architecture



February 15, 2005 Slide 40

Integer-Flying-Adder Architecture

Issues with current architecture: 
since PLL/VCO is running at a fixed frequency =>

– need fractional bits to achieve certain 
frequency, -> periodic carry-in bit, 

– frequency modulation of the output signal, or, 
inherent jitter

Continued
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Integer-Flying-Adder Architecture

Idea:

Make PLL programmable

Get ride of fractional bit

→ Eliminate the inherent jitter
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Integer-Flying-Adder: Method
FREQ = T/∆ = 1/(f* ∆) = ((fin*N)/(f*P)) *M

Using two integers, FREQ and M, to approximate a real number f .
2 <= FREQ <= 2N,   M1 <= M <= M2
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Integer-Flying-Adder: Algorithm
The algorithm to search the best control parameters

error_min = very_big_number
for ( M1<=M<=M2 ) {

freq = ((fin*N)/(f*P))*M
error = min( freq-floor(freq),  ceiling(freq)-freq )
if (error < error_min ) {

error_min = error 
Mbest = M
if (freq – floor(freq)) < 0.5 {

FREQ = floor(freq)
}
else {

FREQ = ceiling(freq)
}

}
}
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Integer-Flying-Adder: Error Upper-
Bound

|T-T’|/T = r*∆ /T
<= (1/2) * ((fin*N)/(f*P)) / (((fin*N)/(f*P))*M)

= 1/(2*M)
<= 1/(2*M1)
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Integer-Flying-Adder: Error 
Distribution Envelope

for (2<=F<=64) {
for (M1<=M<=M2) {

F-M-seq(index) = M/F
}

}

foreach M/F in F-M-sorted-seq(index) {
F-M_curr = M/F
p_max = 2/(F-M_curr + F-M_prev)
e_max = (F-M_curr - F-M_prev)/( F-M_curr + F

-M_prev)

F-M_prev = F-M_curr 
}

ContinuedSee paper on TCASII (3th paper) for mathematical prove
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Integer-Flying-Adder: Error 
Distribution Envelope
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Integer-Flying-Adder: Error 
Distribution Envelope

The effect of M2 on the error distribution envelope
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Integer-Flying-Adder: Summary

• Comparing to original architecture:
eliminate the inherent jitter
but the PLL loop need adjustment

• Comparing to “Integer-N”, the frequency range is 
much wider.

• Comparing to “Fractional-N”, no need to 
compensate the spurious signals.
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One Application Example: All 
Digital Phase Lock Loop

“flying-adder” synthesizer

All loop variables are digital 
values, no analog voltage !
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ADPLL: A New Idea

VCO

Synthesizer1

Synthesizer2

FREQ1

FREQ2

Measure
Frequency

fin

Conversion

fout

fhi

frequency of fin

Flying-adder

Known high frequency
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ADPLL: A New Idea 
• Goal:  fout = N * fin
• Procedure:

– Using synthesizer1 to generate a known high frequency fhi (e.g. > 500 MHz), by 
FREQ1.

– Using fhi to measure fin.( a simple counter)  Get a frequency number of fin.
– Multiple this frequency number by N and convert it to FREQ2.
– Using synthesizer2 to generate the fout, by FREQ2.

• Advantage:
– fout is not directly related to fin electrically, noise in fin is isolated. PFD and filter 

are not required.
– Especially good for multiplying the input frequency to a large number (N is big).
– The VCO used for flying-adder synthesizers can be a very simple one with 

minimum analog complexity.
– Synthesis1 in above diagram can be a very simple one (no fractional part)
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Conclusion

• A novel frequency synthesis 
architecture is presented.

• This architecture can be used to 
generate many, many frequencies.
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F = p *M

F

F + 1

p, a required frequency

F + 1

F + 2

As M sweep
As M sweep


