INNOVATE. CREATE. MAKE THE DIFFERENCE.™

THE **TECHNOLOGY** DIFFERENCE

"Flying-Adder" Frequency and Phase Synthesis Architecture

Liming XIU Texas Instruments Inc, HPA/DAV

01/30/2005

What is it?

An novel frequency synthesis architecture that takes a digital value and generates a signal of requested frequency (and phase).

Continued

Background Material

This presentation is based on five papers:

- IEEE Journal of Solid-State Circuit, 06/2000, "An Architecture of High Performance Frequency and Phase Synthesis".
- IEEE Trans. on VLSI, 10/2002, "A 'Flying-Adder' Architecture of Frequency and Phase Synthesis with Scalability".
- IEEE Trans. on Circuit & System II, 03/2003, "A New Frequency Synthesis Method based on 'Flying-Adder' Architecture".
- IEEE Journal of Solid-State Circuit, 03/2004, "A Novel All Digital Phase Lock Loop with Software Adaptive Filter".
- IEEE Trans. on VLSI, 02/2005, "A 'Flying-Adder' Frequency Synthesis Architecture of Reducing VCO Stages".

History

- Started in late 1998, MSP/Video Group.
- Being continuously refined/improved.
- Thanks to Hugh Mair

Presentation Outline

- The principal Idea
- Implementation: First Generation
- Implementation: Second Generation
- Integer-Flying-Adder Architecture

Principal Idea

Using multiple equally-spaced phases generated from a VCO to synthesis various *frequency* and *phase*, by triggering the flip-flops at predestined time.

Principal Idea, continued

VCO Output waveforms, for N=32

Continued

Principal Idea, continued

Triggering the flip-flop at predestined time to generate the desired frequency, by utilizing the multiple VCO outputs.

Numerical Example

VCO running at 156.25 MHz (6.4 ns)

 $\Rightarrow \Delta = 6.4/32 = 0.2$ (ns)

Wanted: 204.08 MHz, or T = 4.9 ns

=> FREQ[9:0] = $T/(2\Delta)$ = 4.9/0.4 = 12.25 = 01100.01000b

Integer portion is used for selecting tick, fractional portion is for error accumulation.

Continued

Numerical Example, continued

Key Facts

- VCO has to be in multiple-delay-stages style, single-ended or differential.
- The PLL/VCO is running at a fixed frequency, no loop dynamic responds requirement.
- Output frequency range, theoretically: (1/2)fvco <= fout <= (N/2)fvco
- In practice, the high-frequency is limited by the speed of the process in which this architecture is implemented.
- Has inherent jitter if fractional bits are used.
- Frequency resolution (step): $\delta f = -2^{-k} * \Delta * f^2$

Inherent Jitter

Texas Instruments

THE **TECHNOLOGY** DIFFERENCE

Output frequency vs. FREQ (an example)

February 15, 2005

Frequency divider and "Phase divider"

- To generate frequencies, divider can be used. But divider ratio has to be integer → available frequencies are limited.
- "Flying-Adder" architecture can be viewed as "phase divider" which provides additional level of frequency divide → more available frequencies.

Presentation Outline

- The principal Idea
- Implementation: First Generation
- Implementation: Second Generation
- Integer-Flying-Adder Architecture

Implementation: Problems

The Glitch of the MUX

Implementation: Two Paths

Implementation: Two Paths

Implementation: Two Paths

Relaxed the constrain on adders => double the circuit speed One path generates the rising edge, the other for falling edge

Implementation: Two Paths

This two paths architecture solved the previous two problems, but created a new problem:

the synchronization of the two paths.

In other words, MUX_A and MUX_B's address values are unrelated => duty cycle is uncontrollable.

Implementation: Synchronized

Implementation: Synchronized

Now MUX_B's address is related to MUX_A's

New problem: Adder in PATH_B doesn't have full cycle to work

TEXAS INSTRUMENTS

Implementation: Pipelined

Implementation: Pipelined

- Now both the accumulator in PATH_A and the adder in PATH_B have full cycle to work.
- Timing constrain: see below

Implementation: First Generation

First generation development history:

- One Path
- Two Paths
- Synchronized
- Pipelined

Key features of this architecture:

- interlocking between paths
- self-clocking
- pipeline

Summary: The Advantages

•The output frequency can be changed instantly without any dynamic process.

•With enough fraction bits, any frequency within certain range can be generated with any accuracy.

•Phase shift version of the output signal can be generated.

•Output signal with various duty cycle can be generated.

•Since VCO running at fixed frequency, VCO and PLL design are much simplified, the PLL is much robust against temperature draft, process and voltage variation.

•The 'increment' value can be modulated to produce a highly accurate and predictable spread spectrum clock source.

Phase Synthesis: The idea

Phase Synthesis: The idea

- The MUX address used in PHASE_GEN is the sum of the MUX_A's address and PHASE[4:0]
- The data used in DFF of PHASE_GEN is the same as data used in FREQ_GEN
- The Z_SHIFT is a delay version of Z. The delay amount: PHASE[4:0] * Δ

Phase Synthesis: Implementation

Phase Synthesis: Problems

Problems:

- "Dead-zone"
- "Dual-stability"

Presentation Outline

- The principal Idea
- Implementation: First Generation
- Implementation: Second Generation
- Integer-Flying-Adder Architecture

Second Generation Architecture

The new architecture:

- the operating speed is greatly improved.
- has scalability for higher output frequency.
- has an internal node whose frequency is higher than that of the synthesized output.
- eliminates the "dead-zone" and "dual-stability" for phase synthesis.

Continued

TEXAS INSTRUMENTS

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

Sec. Gen. Arch.: Scalability

 Multiple paths (more than two) to relax the constrains on adders further -> higher output frequency

Continued

Sec. Gen. Arch.: Scalability

• The clocks signals and the mechanism of interlocking

Sec. Gen. Arch.: Phase Synthesis

Fig. 17. The circuitry for Z_SHIFT

Presentation Outline

- The principal Idea
- Implementation: First Generation
- Implementation: Second Generation
- Integer-Flying-Adder Architecture

Integer-Flying-Adder Architecture

Issues with current architecture: since PLL/VCO is running at a fixed frequency =>

- need fractional bits to achieve certain frequency, -> periodic carry-in bit,
- *frequency modulation* of the output signal, or, inherent jitter

Continued

Integer-Flying-Adder Architecture

Integer-Flying-Adder: Method

 $FREQ = T/\Delta = 1/(f^*\Delta) = ((f_{in}^*N)/(f^*P))^*M$

Using two integers, *FREQ* and *M*, to approximate a real number *f*. $2 \le FREQ \le 2N$, $M1 \le M \le M2$

Integer-Flying-Adder: Algorithm

The algorithm to search the best control parameters

```
error_min = very_big_number
for ( M<sub>1</sub><=M<=M<sub>2</sub> ) {
     freq = ((fin*N)/(f*P))*M
     error = min( freq-floor(freq), ceiling(freq)-freq )
     if (error < error_min ) {</pre>
               error_min = error
               \mathbf{M}_{\text{best}} = \mathbf{M}
               if (freq – floor(freq)) < 0.5 {
                          FREQ = floor(freq)
               }
               else {
                          FREQ = ceiling(freq)
               }
```

Integer-Flying-Adder: Error Upper-Bound

 $\frac{|T-T'|/T = r^*\Delta/T}{<= (1/2) * ((fin^*N)/(f^*P)) / (((fin^*N)/(f^*P))^*M)}$ = 1/(2*M) <= 1/(2*M₁)

Integer-Flying-Adder: Error Distribution Envelope

See paper on TCASII (3th paper) for mathematical prove Continued

Integer-Flying-Adder: Error Distribution Envelope

Frequency Error Distribution

Integer-Flying-Adder: Error Distribution Envelope

The effect of M2 on the error distribution envelope

February 15, 2005

Integer-Flying-Adder: Summary

Comparing to original architecture:
 >eliminate the inherent jitter

>but the PLL loop need adjustment

- Comparing to "Integer-N", the frequency range is much wider.
- Comparing to "Fractional-N", no need to compensate the spurious signals.

One Application Example: All Digital Phase Lock Loop

February 15, 2005

ADPLL: A New Idea

ADPLL: A New Idea

- Goal: *fout = N * fin*
- Procedure:
 - Using synthesizer1 to generate a known high frequency *fhi* (e.g. > 500 MHz), by FREQ1.
 - Using *fhi* to measure *fin*.(a simple counter) Get a frequency number of *fin*.
 - Multiple this frequency number by *N* and convert it to FREQ2.
 - Using synthesizer2 to generate the *fout*, by FREQ2.

Advantage:

- *fout* is not directly related to *fin* electrically, noise in *fin* is isolated. PFD and filter are not required.
- Especially good for multiplying the input frequency to a large number (*N* is big).
- The VCO used for flying-adder synthesizers can be a very simple one with minimum analog complexity.
- Synthesis1 in above diagram can be a very simple one (no fractional part)

Conclusion

- A novel frequency synthesis architecture is presented.
- This architecture can be used to generate many, many frequencies.

F = p * M

p, a required frequency