

An IC Design Perspective "Why Would We Choose Flip Chip"

Scott Wood

Outline

- What is Flip Chip?
- Why Choose Flip Chip?
- Design Requirements that Drive to Flip Chip
- Tradeoffs in Flip Chip
- CAD Problems to be Solved

What is Flip Chip?

Flip-chip Cross-section

Example: AB58

IC and pinout optimized to minimize size 12x16 mm

Example: Graphics IC

Example: Set-top Box IC

432 signals, 636 bondwires

BGA

Large BGAs

622 Mb/sec data switch

703 bondwires 696 balls

Small BGA

- Very small
- Very inexpensive
- Many applications

Wirebond PBGA Cross-section

FlipChip BGA (Organic Build-

High density layers over low density core

- 2 to 10 metal layers
- Organic dielectrics (BT epoxy, BCB, PTFE)
- Cu metallization
- Medium to high cost
- 15 to 50 mm sizes
- 1.27, 1.0, 0.8 mm pitch
- Ball count >1500
- Optional metal lid

Why Flipchip in Package?

- The package is the bridge between the IC and the application:
 - Protection
 - Testability
 - Reduce PCB complexity
 - Enhance electrical
 - Enhance thermal

Wirebonding

Advantages

- BGA is very adaptable to application by correct design of substrate
- BGA is very adaptable to low-cost high-volume manufacturing for the IC vendor and for the user
- Standard tooling can be used ball pattern, handling, assembly, molding, etc.
- Optimized package can be had with minimum impact on cost and manufacturing.

Why Choose Flip Chip?

Reasons to use FlipChip

- I/O count
- Performance
- Power dissipation
- I/O density
- IC size
- Cost
- Manufacturing

But careful design is required!

Considerations for 1000+ I/O

- MUST be BGA
- MUST be flip chip
- Multilayer package substrate required (4-10L)
- Material choice depends on many factors customer preference, signal integrity, cost, etc
- Substrate design WILL be custom

Flipchip vs Wirebond – I/Os

Flipchip Basic Limits

- Bump height strongly affects assembly especially time and cost of the underfill process
 - Smaller height means increased cost
- Bump height and IC size strongly affect reliability
 - Stress is generated by mismatch in thermal expansion
 - Smaller bump increases stress
 - Larger IC increases stress
 - Max IC size depends on substrate and bump height
 - Desired bump height typically $100 \text{ to } 125\mu$

Example: Design for high speed

Design Flexibility

Multiple power/ground
Flexible bondfinger location
Analog signals
Shielding
Isolation
Control impedance if needed

Flipchip Design issues: Power/Ground

- In W/B, multiple P/G are handled with multiple segmented bonding rings
- In F/C we will need more vias and probably more layers
- Substrate will be more complex, this complexity controlled
 - by IC/package trade-offs
- Complexity = cost

I/O, power/ground schemes

- Signals on the outside, power/ground on the inside -more dense outside, less dense inside
- Easier routing on package
- Easier probe
- Easier assembly
- But don't get locked in:
 - Not always adequate
 - Closely tied to IC design
 - Acceptable paths through package?

Signal traces – total path length is still the

Electrical Performance

Ls = 14nH Lm = 7.5 nH C = .78 pF

Ls = 13.1 nH Lm = 7.2 nHC = .92 pF

Note plating traces in W/B case

Tradeoffs in Flip Chip

Flipchip Design Issues: Routing

- Multiple rows of signal bumps on IC must escape on package substrate
- Trade-off is IC signal density vs. substrate cost and complexity

(Substrate via size, trace size, layers)

Flipchip Design Issues

- High density routing capability is needed on the package substrate in the bump escape area, but nowhere else
- In wirebond parts, the wires take up most of the translation from IC pitch to substrate pitch.

BGA Applications and Design

- BGA is the only practical package choice for high I/O (200+) designs
- In the BGA world, 95+% of chips require a custom design
- In high-speed, high I/O arena this becomes 100%

Design Requirements that Drive to Flip Chip

- Large numbers of IO (>1200)
- Large numbers of Power/Gnd connections (>1200)
- High Performance Packaging (high speed, low inductance)
- High Power Consumption (40-60+ watts)
- Nominal Die Size (~13mm/side for ~2400 I/O + Power/Gnd + >8 Million Gates Logic + Memory)
- Multiple Power Supplies Separated on Chip (IO and Core)

Increasing Pin Counts

Today's Capability

Design Concerns with Flip Chip

- PCB/Ball Constraints
- Substrate Constraints
- Bump Constraints
- Silicon Constraints

Flip Chip Cross Section

Silicon /Bumps – defined by layout

Substrate- defined by layout and PCB

Balls/PCB – defined by System

Ball Constraints

- PCB Trace Pitch
- Ball Size
- Ball Pitch
- Reflow Temperature

Substrate Constraints

- Trace Pitch
- Via Size
- Number of Layers
- Cost
- Substrate composition
- Complexity (defined by silicon to PCB matching)

Bump Constraints

- Bump Size
 - Width and Height
- Bump Pitch
- Under fill
- Alpha Particle
 Emission/Lead Content
- Reflow Temperature
- Current Carrying Capability

Silicon Constraints

- I/O Construction, Placement and Size
- Auto Routing
- Electromigration
- Cross Talk
- Die Size
- Large Number of Signals
- "Keep Out" Areas
- Die Stress

- IO Methodology
 - Peripheral IO vs. Area IO
 - Peripheral Power/GND vs. Direct Connect
- Bump Methodology
 - Peripheral Bumps vs. Area Array Bump
- Place and Route
 - Bumps in Netlist
 - Exclusion Areas
 - Power Grids

Variations

- Peripheral Bumps vs. Full Array Bumps
 - Trade off bump pitch vs. cost
 - Trade off bump pitch vs. substrate complexity and routing complexity
- Peripheral IO vs. Array IO
 - Staggered Pads with fine pitch
 - Multiple IO Rows
 - Core Area IO Rings
 - Trade off substrate complexity

Peripheral Bump Array

- Number of Rows Limits Substrate Routing
- Costly Substrate May Be Required
- Bump Pitch Must be Aggressive For Large Number of IO
- Redistribution Layer May Still be Needed

Bump Count vs. Bump Pitch 254um Peripheral Array

Peripheral Bump Array ISQED **Corner Section**

Full Array

Fully Populated Array

- Many More Bumps Can Be Placed
- Less Aggressive Bump Pitch Can Be Used
- Less Aggressive Bump Size
 Can Be Used
- Must Have Ability To Place IO As Standard Cell
- Simplify Substrate Design
- Possibly Reuse Bump Masks
- Redistribution Layer Probably Not Required

Area vs. Peripheral Array

Bump Count vs. Bump Pitch Full Array

Bump Comparison - Similar Die Size Full Area Array vs. Peripheral Bumps

Bumps Outside	Bump Rows	Bump Pitch	Periph/ Array	Bumps	Die Size
40	8	200	P	1136	11220
45	8	200	P	1296	12620
50	8	200	P	1456	14020
30	30	240	A	1741	10142
38	38	240	A	2813	12858
42	42	240	A	3445	14215

Note: 100um edge clearance, no other assumptions were made on exclusions for corners, etc.

Full Array - Section

Exploded View

- Development Required for Core Placed IO (IO's, Power Grids, ESD,....)
- Development Required for Place and Route
- Not All Bumps Can Be Used (i.e., over Sensitive Blocks)
- Alpha Particles Can Be Reduced With Alternate Bump Materials

Summary of Trade Offs

- Assembly costs
- Substrate complexity
- Power/performance
- I/O density
- Flexible Netlist
 - inclusion of bumps
 - flexibility between substrate and silicon

IO Placement and Design

- Solution 1: IO ring as usual at chip periphery
- Solution 2: direct access to core vdd & gnd
- Solution 3: double IO ring at chip periphery
- Solution 4: center IO ring, one or more in chip core
- Solution 5: chip scale IO distribution IO's placed like standard cells anywhere in die

- Solution 1: IO ring as usual at chip periphery
 - Chip design very close to bonding solution
 - Simple replacement of IO's for bonding with IO flip chip layout
 - Library solution easily available
 - Complex redistribution layer required
 - Limited number of IO's

No chip area benefit for small chips - Full bump array redistribution very difficult

- Solution 2: direct connect core power grid
 - IO ring includes:
 - All signal IO's
 - Access to IO power supplies
 - Core ESD protections (= IO slots without access
 - Core power bumps connect directly to gnd & vdd power grids.
- Benefits
 - Better core power distribution (less voltage drop)
 - Simplifies redistribution layer
 - Somewhat reduces the IO number at periphery.
- Risk: ESD level will must be evaluated

- Solution 3: double IO ring
 - Two IO rings at chip periphery
 - Equivalent IO pitch ½
 - Allows to fit higher number of IOs.
 - Redistribution extremely problematic
 - Chip size very likely to be limited by bump constraints
- IO library would need only minor, if any, rework.

- Solution 4: center IO ring
 - One or more IO ring in chip core
 - Ring in core can also be simple row(s) of IOs
 - Less flexibility in core floor planning
- Benefit
 - Potentially less distance to reach IO buffer from core blocks.
 - Redistribution considerably less complex
- IO library would need little, if any, rework.

IO floor planning: Method #4

Inner "ring" shown is flattened (left and right sides abutted)

Other arrangements possible

- Solution 5: IOs anywhere
 - IOs are distributed throughout the core chip, individually or in small groups.
 - IO buffer distribution can closely reflect the bump distribution.
- Benefit
 - No redistribution layer required
 - Direct connections to IO buffers
- Prospective solution for High Pin Counts
- Development Needed:
 - IO's, Power Grids, ESD
 - CAD place and route tools
 - Verification tools

CAD Issues to be Solved

- Need appropriate IO Design for Area Array IO
- Need to be able to place IO like Core Macro Cells
- Need to comprehend Single/Multiple Power Grids/Domains
- Need Connectivity Checking of Transistor to Substrate Trace to PCB (silicon/bump/trace/ball)
- Need the ability to instantiate Bumps in Gate Level Netlist for Placement in relation to IO and power grids

- Need the ability to Extract and Simulate across boundary connections of silicon/bump/substrate
- Need the ability to exclude Bumps from some areas
- Need the ability to perform top level routing from IO macro to Bump (redistribution layer)
- Need Concurrent Design of PCB, Substrate and Silicon

Design Solutions that Drive to Flip Chip

- Large numbers of IO (>1200) Flip Chip has greater number of connection points available
- Large numbers of Power/Gnd connections (>1200) Flip Chip can directly connect to Power grid
- High Performance Packaging (high speed, low inductance)
 Flip Chip eliminates/reduces bond wire effects
- High Power Consumption (40-60+ watts) BGA package allows heat sink attachment to die mount area
- Nominal Die Size (~13mm/side for ~2400 I/O + Power/Gnd + >8 Million Gates Logic + Memory) – Full array of bumps reduces pad limited die
- Multiple Power Supplies Separated on Chip (IO and Core)
 - Substrate can have multiple power planes

Conclusions

- IO count is increasing dramatically due to increased silicon content and power/ground requirements
- Gate count is increasing dramatically due to increased processing capability driving very high power consumption
- New packaging methodologies must be introduced

Conclusions

- IOs not necessarily a limiting factor
 - Pad limited chips may very well become bump limited with flip chip.
 - Congestion in redistribution must be taken into account
- Peripheral IO and Peripheral Array Options will be feasible for medium pin counts
- Full Array Options required for high pin counts
- IO libraries may need major redesign for some solutions, OK for other solutions
- Development work required for high pin counts
 - IO design, power grid, place and route
 - Codesign, verification
 - Reliability, ESD