SoC Design & It's Challenges

Atul Jain

November 11, 2004

IEEE CAS (Dallas Chapter)

Outline

- □ What is SoC?
- □ Why SoCs?
- □ Why SoC Methodology?
- Design Challenges
- □ Summary

What is <u>System on a Chip</u> (SoC)?

Application Specific Chip with:

- Embedded hard/soft/firm processor cores
- □ Embedded memories
- □ Multiple peripherals
- Modules interconnected via "standard" busses
- □ User logic 500K+ gates
- Analog Modules (Phys, ADC, DAC)
- Application S/W for the processor core(s)

Design Reuse a MUST for SoC success

Why SoCs: Potential chip-level savings?

A typical broadband application consists of following chips: DSP, CPU, Data Converters, ASIC/FPGA (Peripherals and Custom Logic), Ethernet PHY, and Memories.

Typical chip-level Savings of 30% - 45% using SoC!!!

Why SoCs?

- ❑ Advanced technologies enabling more integration on a chip → Reduced Product Cost.
- Physical size of products shrinking Minimize number of parts on a board.
- □ Consumer electronics requiring low cost products → More integration.
- □ Minimize number of silicon vendors for a product → Reduced Business Cost.
- □ Improved Reliability.

Why SoC Methodology?

- □ Time-to-Market extremely important for business.
- Easy integration of Intellectual Properties (IPs) from multiple sources.

Resource management

- Minimize number of Resources Required to complete a design.
- Efficiently manage resources across projects.
- Share domain expertise across multi-site design teams.
- Make effective use of design automation.
- □ Advancement in technology → Handle Increased Complexity of Integration.
- Maximize Performance.
- Manage Feature Creep and Engineering Changes quickly.

Typical Methodologies

- Waterfall Model*
- □ Spiral Model*
- Construct by Correction*

* <u>Source</u>: "Reuse Methodology Manual For System-On-a-Chip Designs," Michael Keating and Pierre Bricaud, Kluwer Academic Publishers.

Waterfall Model

- Based on traditional ASIC flow
- Serial design flow, design transition phases in a step function.
- Assumes all steps are Perfect and NO need to revisit a completed design phase.
- Specification is Golden, NO changes permitted without having a major impact on design schedule.
- Expects clean handoffs from one team to the next.
- □ Works well for ~1M gate designs.
- Not suitable for large complex <u>Deep</u>
 <u>SubMicron (DSM)</u> designs.

Software

Spiral Development Model

RTL & Verification

- Architecture
- **Block Partitioning**
- **RTL Coding**
- Module & Chip-level verification
- DFT Planning

Physical Design

- Library selection
- **Package selection**
- Floorplan
- **Clock expansion**
- **Placement**
- Routing
- **Signal Integrity**
- IR Drop Analysis

Static Timing Analysis

Construct by Correction

- □ Used for development of UltraSPARC.
- Single team took design from Architectural definition through Place and Route.
- □ Engineers had to learn required tools.
- Team understood impact of architectural decisions on Area, Power, and Performance of final design.
- Planned multiple passes from architecture to layout to learn more about design.
- Multiple iterations allowed the team to learn from their mistakes and correct them in next iteration.
- UltraSPARC development project was one of the most successful in Sun Microsystems history.

Design Start

- Design Specification
- □ Library selection
 - Target technology node
 - Frequency and Power limits
 - Layout density entitlement

IP Selection

- Hard vs. Soft Macro
- Internal vs. external IP
- Embedded RAMs/ROMs
- PLLs & Analog blocks
- Custom Cells (if needed)
- Chip-level Power estimation

Design Start (contd...)

- □ Selection of verification environment.
- Selection of configuration management environment.
- □ IO Selection.
- □ Package Selection.
- Die size estimate tradeoffs
 - Preliminary floorplan
 - IO limited vs. Core limited vs. Megamodule limited vs. Package limited

Challenges for DSM designs

- □ Reusable IP deliverables.
- Design prototyping & partitioning.
- Process variations impact on timing analysis.
- Cross talk noise.
- Voltage drop & power management.
- Design management.

Design Planning essential for all of the above.

Hard IP

□ Need to support the following models:

- Functional
- Timing
- Synthesis
- DFT

- Floorplanning
- Physical Design
- Software tools for processor core
- □ Scan hookup requirements
- Clock insertion delay numbers and skew requirements
- Power requirements
- Integration/Test documentation

Soft IP

- Synthesizable RTL
- Functional Verification
 - Coverage metrics
 - models to speed-up verification
- Synthesis / Timing Analysis
 - Timing exceptions and constraints
 - Clock and Reset requirements
 - Critical paths should be documented
- DFT scripts
- Physical design
 - Memory placement guidelines
 - Special clock handling requirements
- Software tools for processor cores
- Implementation and integration documentation

Design Prototyping & Partitioning

- □ Hardware vs. Software tradeoffs
- Prototyping "Early" assessment of design planning decisions
- Partitioning designs into subchips or hierarchical modules
- □ Flat vs. Physical hierarchy decisions
- Partitioning is needed to
 - Meet <u>Area</u>, <u>Timing</u>, and <u>Power</u> budgets.
 - Minimize top-level logic and routes.

Design Partitioning: Example

"Divide and Conquer" approach for partitioning the design into several smaller blocks.

Timing Analysis for Process Variability

- Typical observations in DSM and sub-nanometer regime:
 - Parameters (L_{eff}, V_T, T_{ox}, etc.) across chips (inter-die) are different.
 - Parameters within the same chip (intra-die) are also different.
 - Why?
 - Feature size is getting smaller than "Lithography Wavelength" → Some mask information is lost.
 - Critical dimensions are scaling faster → Less Control.
 - Back End Of Line (BEOL) variability.
 - Across Chip Line-width Variations (ACLV).
 - Across-the-chip temperature and VDD variation.

Designers and Business goals require as many chips as possible to "work".

"Nano-CMOS Circuit and Physical Design," Ban Wong, Anurag Mittal, Yu Cao, Greg Starr, ISBN:0-471-46610-7

Interconnect variation - Net delays, Path delays are f(P)

 $\Box C_{\text{NET}} = f_{\text{cap}}(P_0, P_1, P_2, ...)$ $\Box DELAY_{\text{NET}} = f_{\text{net}}(P_0, P_1, P_2, ...)$

OCV Analysis

Cannot assume constant PTV across die
 Essential to comprehend impact of these variations in timing analysis.

□ STA tools support OCV analysis mode

- Compute min and max delays for cells and nets by multiplying annotated delay with min and max timing de-rate value, respectively.
- Apply min and max delays to different paths simultaneously.
- For setup check, annotate worst case SDF. Use max delay for launch path and min delay for capture path.
- For hold check, annotate best case SDF. Use min delay for launch path and max delay for capture path.

Crosstalk Analysis

Wire aspect ratio changes for DSM technologies.

Coupling capacitance has gone up with shrink in feature size.

Crosstalk Effects

Crosstalk affects the circuits in two ways: Functionality and Timing.

- Glitch propagation problem.
- Glitches on Clocks can be a real problem.
- Delay Variation can be an issue.

Crosstalk Delay Variation: Example

Crosstalk Delay: Timing Window

Effects of Crosstalk Delay

- Delay changes due to affect of switching aggressor net on victim net needs to be comprehended:
 - During setup check worst case condition
 - capture clock is faster; data path and launch clock are delayed.
 - During hold check worst case condition
 - capture clock is slower; data path and launch clock are speedup.

How to Manage Crosstalk?

- Ensure transition timing window for coupling nets do not overlap.
- For heavily loaded nets improve transition time.
- □ Minimize use of low drive cells.
- □ For clocks, shield to minimize coupling.
- Use Physical Design tools capabilities of avoiding crosstalk during detail route.

Power Management Trends

Power Management – Motivation

□ Active or Dynamic Power

- P_{dynamic} = P_{switching} + P_{short-circuit}
- P_{switching}: Primarily due to actively changing states of the circuit due to constantly charging and discharging of the effective capacitive loads
 - $P_{switching} = Switching Activity x freq x C_{eff} x V_{dd}^2$
 - Clock power is the largest contributor (nearly 75%)
 - Interconnect is the largest consumer
- P_{short-circuit}: Momentary "crowbar" current flowing between VDD and GND when transistor stacks switch state

Leakage or Static Power

 Primarily contributed by source-to-drain leakage current that increases with lowering V_T (threshold) and increasing temperature.

Dynamic Power Management Techniques

Clock Gating

Selectively turn OFF registers when not needed.

Power Gating

- Shut OFF power to blocks in stand-by mode.
- Retention flip-flops (on an isolated power supply) can be used to save the logic state of all sequential elements when the chip is powered down.
- Eliminates need to re-initialize the device when coming out of stand-by mode.
- Power-aware Physical design
 - Reduce capacitive loading by down-sizing gates.
 - Minimize wire length.

Voltage Islands

- Partition design into:
 - High speed blocks fed by higher voltage.
 - Low speed blocks fed by lower voltage.
- Need Level Shifters (LS) between blocks operating at different voltage levels and ensure correctness of LS connectivity.

- □ Need Scaleable Polynomial Library (SPM) support
- Additional careabouts related to scan stitching and clock distribution required.

Design Management

- Configuration management
 - Paramount for Multi-site development
- Design and Scope changes
 - Feature Creep
 - Process Requirement Changes
 - Test and Reliability Requirement Changes.
- □ External deliverables, e.g., IPs, custom cell.
- Handoffs and milestones
 - Design Milestones, e.g., RTL freeze, Initial synthesis, tapeout.
 - Design team (or customer) handoffs.

Optimize engineering and compute resources.

Summary

- Robust Design Methodology needed for success of SoCs.
- Design Reuse and Automation essential ingredients.
- Different methodologies followed in the industry:
 - Waterfall Model
 - Spiral Design Model
 - Construction By Correction
- SoC challenges can be handled effectively with Design Planning and Management.