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WhatWhat’’s the problem?s the problem?

Sources of “Within Die Variation”
• Random Dopant Fluctuations (RDF)
• Line Edge Roughness (LER)
• Gate Stack (tOX, etc.)
• Lithography (ACLV, edge effects, etc.)
• Temperature and temperature gradients
• Different sensitivity to back gate bias
• Hot Carriers
• NBTI

Local transistor mis-match:

σVth =  √σ2
Vth(RDF)+σ2

Vth(LER)+σ2
Vth(other)
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Random Dopant Fluctuation (RDF)Random Dopant Fluctuation (RDF) [2]

Gate

DrainSource

Gate

Pocket

LDD

• Statistical variation in the  
number and placement of 
dopants in the channel

• At 32nm it is expected the 
channel doping may only 
be made up of <100 
atoms.

• The variability of Vth due to RDF:

σVth ∞ 1/√(WL)

SRAM bit cell devices 
will have a higher σVth
than the logic devices, 
due to the channel 
area difference

David Scott, ISSCC 2007 Short Course, Texas Instruments
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Line Edge Roughness (LER)Line Edge Roughness (LER) [3]

Poly Gate

60nm

Foot/Notch

Jeff Wu, et. al., SISPAD 2002, Texas Instruments
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Variability in the SRAM Bitcell

• Difficult to reduce the Operating Voltage (VDDMIN) 
– Read Fails (SNM)
– Write Fails (VTRIP)
– Access Fails (IREAD or ICELL)
– Data Retention Fails (VHOLD)

• Increased leakage (IDDQ Fails)

Variability in the Sense Amp

• Increased input offset for differential BL sensing
• Decreased accuracy of timing tracking circuits
• Shifted trip points for large signal sensing

WhatWhat’’s the problem for SRAMs the problem for SRAM’’s?s?
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Scaling less than Entitlement

• Bit Cell & SRAM area is scaling less than 50%:

– 65nm: bit cell area > 0.50um2

– 45nm: bit cell area > 0.25um2

• Difficult to get SRAM performance scaling

• SRAM VDD is not scaling

• SRAM leakage is increasing

What are the consequences?What are the consequences?
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What’s the problem?

Bit Cell related design techniquesBit Cell related design techniques
♦♦ Minimum Operating voltageMinimum Operating voltage

♦♦ Read Margin improvementRead Margin improvement

♦♦ Write Margin improvementWrite Margin improvement

♦♦ Alternative SRAM Bit Cell optionsAlternative SRAM Bit Cell options

♦♦ IDDQ improvementIDDQ improvement

Non-Bit Cell related design techniques

Summary
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Diagrams: Masanao Yamaoka, et. al., VLSI 2004, Hitachi

• The SRAM bit cell is much 
more sensitive to lowering VDD 
than standard logic gates

• The SRAM bit cell is a ratioed 
circuit which depends on the 
relative strengths of its 
transistors

• Every bit cell must work 
properly

VDDVDDMINMIN FailuresFailures [6]
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READ Failures (SNM)READ Failures (SNM)

NL

NR

WL

t

v

Increase T6

DecreaseT5

DecreaseT4

IncreaseT3

IncreaseT2

DecreaseT1

Vth M/M for Read FailuresDevice

• When the WL turns on node NL will 
rise due to voltage divider action 
between T5 and T2

• If this level is higher than the trip 
point on of the INV(T3,T4) the latch 
will loose it’s state: Read Failure

VTH

VTH

NL NR

WL

BL BL

T1

T2

T3

T4

T6T5
“0” “1”

Trip Point
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Read Assist: Read & WriteRead Assist: Read & Write--BackBack

Waveforms: Harold Pilo et. al.; VLSI 2006, IBM

• SRAM’s typically use a 
multiplexed column architecture

• Columns with an active 
wordline, but not being 
accessed are “half-selected”
columns

• The half-selected BL’s have 
the greatest chance of causing 
an upset due to longer time 
the BL is at a high level

• Placing a sense amp on every column amplifies the half 
selected columns on every read and write cycle (eliminating 
the half-selected state)
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Read Assist: Pulsed Wordline (PWL)Read Assist: Pulsed Wordline (PWL) [8]

• Pulse WL only long enough 
to transfer signal to BL’s, but 
not long enough to allow 
weak bits to flip

• Write requires wider WL 
pulse, so unselected columns 
must first be read then 
written back along with 
normal writes (aka Read-
Modify-Write)

• RMW requires Sense Amp 
on every column

READ WRITE

BL
(selected)

WL

SAE

BL  
(half-selected)
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Read Assist: Lower BL PrechargeRead Assist: Lower BL Precharge [8,10]

• When the WL turns on the 
voltage divider action between 
the PG and PD causes the low 
node of the bit to rise

• The optimum BL precharge
voltage is VDD-VTH(PG) 10

• Several proposals for generating 
the BL precharge voltage:

Precharge with NMOS
Pulsed BL pull-down
Separate/generated supply

• Precharge levels below the optimum value cause a dramatic 
increase in fails due to disturb from the high node

BL BL

WL

WL

PRECH PRECHPRECH
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Read Assist: Lower WL LevelRead Assist: Lower WL Level [11,12]

• The WL level is held below the memory VDD

• The gate drive of the Pass Gate is reduced, relative 
to the Pull-Down device and SNM is improved

• Read current is reduced, and write is more difficult

WL
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Read Assist: Raised VDD LevelRead Assist: Raised VDD Level [15]

• Raise VDD level of the bit 
cell above the WL voltage

• This will increase the gate 
drive of the Pull-Down 
device and improve SNM

• During a read, VDD of all 
columns must be raised

• When the memory is 
inactive, the lower VDD will 
reduce leakage

cell cell cell cell

cell cell cell cell

Column MUX (4:1)

VDD_hi

VDD_lo

WL

WL

RE VDD
Selector
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Read Assist: Raised VDD LevelRead Assist: Raised VDD Level [9, 13]

• Raise VDD level of the 
bit cell above the WL 
voltage, using capacitive 
coupling

• This will increase the 
gate drive of the Pull-
Down device and improve 
SNM

• This scheme does not 
require additional power 
supplies
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Review: Read Assist TechniquesReview: Read Assist Techniques
• Control of the bit cell supplies can compensate for 
mis-match between the PG and PD transistors during 
a read operation and improve SNM

• Reduce influence of the bitline bias to stress bit cell SNM:
− Pulsed Wordline
− Amplify signal on all bitlines
− Short Bitlines
− Lower Bitline precharge level

• Reduce gate drive of PG relative to PD device
− Reduce Wordline level below the bit cell VDD level

• Increase gate drive of PD relative to PG device
− Raise bit cell VDD above Wordline level

• Raise the trip point of the cross-coupled inverters
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Write FailureWrite Failure
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Vth M/M for Write FailuresDevice

• During a write node NR must be 
pulled low through T6

• If NR cannot be discharged below 
the trip point of INV(1,2), during 
the WL pulse, the result is a write 
failure
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Write Assist: Lower VDD by ColumnWrite Assist: Lower VDD by Column [15]

• Similar to read assist 
techniques, we can 
dynamically change rail 
voltages and improve the 
write margin of the bitcell  

• Write margin is improved 
with VDD lower than the 
WL voltage

• The gate drive of the PU 
device is reduced, relative 
to the Pass Gate

cell cell cell cell

cell cell cell cell
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Write Assist: Lower VDD by ColumnWrite Assist: Lower VDD by Column [11,12]

• Typically, the VDD wire 
is not shared between 
adjacent columns

• The bit cell VDD is 
lowered below the WL 
level, thru a capacitive 
charge sharing scheme
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Write Assist: Lower VDD by ColumnWrite Assist: Lower VDD by Column [16]

• Requires separate 
VDD by column

• Float VDD of selected 
columns during a write

• This is a self-limiting 
technique: current flow 
will cease once the bit 
is written

• Lower VDD is shared 
with unselected rows 
along the same column

“H”

BL BL

VD
D
M

SELn
VDD

“L” “H”

“H” “L”

BL BL

VD
D
M

“H”

SELm

“H”
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Write Assist: Raised VSSWrite Assist: Raised VSS [10,17]

• During a write VSS of the 
bit cell is floated 

• When the wordline turns 
on the floating VSS begins 
to charge up

• The raised VSS level 
assists the write operation

• VSS is typically shared between adjacent columns, 
which raises SNM concerns on half-selected columns

• Unlike the “float VDD” scheme, this technique is not 
self limiting, so clamp devices are required

RE

Virtual VSS

IREADIREAD

‘L’

‘H’

‘L’‘H’

‘L’ ‘H’ ‘H’ ‘H’
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Write Assist: Boosted WLWrite Assist: Boosted WL [18]

• Driving the wordline to a 
voltage higher than the 
array VDD, will destabilize 
the accessed bit cell

• The gate drive of the Pass 
Gate is increased relative 
to the Pull-Up device, and 
VTRIP is improved

• Since the WL services all columns, all bit cells along 
the WL become unstable

• Non-interleaved columns or a read and write-back 
scheme is required

READ WRITE

WL

MT/MC

VDD+∆V
VDD

0V

VDD

0V

BLt/BLc

VDD+∆V
VDD

0V
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Write Assist: Negative Bitline VoltageWrite Assist: Negative Bitline Voltage

VNEG VNEG

WRT WRT

BL BL

WL

WL • During a write, connect 
the source of the driver to 
a negative voltage (VNEG)

• The low BL will get pulled 
below VSS

• This will increase the 
gate drive of the PG 
relative to the PU device, 
and improve write margin
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Review: Write Assist TechniquesReview: Write Assist Techniques

• Dynamic control of the bit cell supplies can 
compensate for mis-match between the Pass Gate 
and Pull-Up transistors during a write operation to 
improve WRITE margin:

• Reduce gate drive of Pull-Up relative to Pass Gate:
− Lower bit cell VDD 
− Raised bit cell VSS 

• Increase gate drive of the Pass Gate drive relative 
to Pull-Up device

− Boosted Wordline Voltage
− Negative Bitline Voltage
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Dual Rail ArchitectureDual Rail Architecture [19]

• Operate SRAM array at 1.2v for SNM, VTRIP and IREAD

• Logic can operate with 0.7v to 1.2v VDD for low power

VSS

Periphery
Circuits

Memory
Array

VDDM VDD

VSS

VDDM

VSS

WL

VDD

L/S R/D

• An alternative to using 
dynamic power rail 
techniques is the dual rail 
architecture

• Decouples logic VDD from 
SRAM bit cell constraints

• Chip level power routing is 
compromised and a second 
power supply is introduced
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Alternative Bit CellsAlternative Bit Cells

• At 45nm and 32nm; R/W Assist techniques or dual 
rail may not be sufficient to allow operation at low VDD 

• Bigger bit cells can have less variability, greater IREAD
and better operating margins at low VDD levels

• If we consider bigger bit cells, there are alternatives 
to the standard 6T SRAM bit cell which can improve 
VDDmin operation
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Alternative SRAM Bit Cells: Alternative SRAM Bit Cells: 7T7T [20]

• SNM-free bit cell

• Single-ended read

• Single-ended write

• Non-Interleaved columns

• Floating node issues

• “L” shaped layout, allows 
precharge and sense amp 
devices to be placed 
throughout the memory 
array

WWL

RWL

W
BL RB

L

WL
T7

NL NR

T7

6T 7T
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Alternative SRAM Bit Cells: 8TAlternative SRAM Bit Cells: 8T [21,43,44,45]

• The latch can be designed with very good write 
margin (i.e. poor stability when WWL is high)

• SNM-free bit cell

• Single-ended read

• IREAD is determined 
by read buffer

•Device sizes may be 
optimized to reduce 
leakage and VMIN

WBL WBL RBL
RWL
WWL

T7

T8
NL NR
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Alternative SRAM Bit Cells: 9TAlternative SRAM Bit Cells: 9T [22]

• The latch can be designed with very good write 
margin (i.e. poor stability when WWL is high)

• SNM-free bit cell

• Differential Sensing

• IREAD is determined by 
T7/T8 and T9

• Device sizes may be 
optimized to reduce leakage 
and VMIN

WWL

RWL

BL BL

T7 T8

T9

N
L

N
R
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Review: Alternative Bit CellsReview: Alternative Bit Cells
• Read margin and Write margin force conflicting 
requirements on the SRAM bit cell designer

• The alternative bit cell’s discussed remove this 
conflicting requirement:

− Separate the read and write ports
− Margins associated with each of these operations 
can be improved without concern for the other

• Main problem with Alternative Bit Cells:  AREA!!!
− More bit cell transistors
− Additional periphery circuits (e.g. WL drivers)
− Additional metal wires
− non-interleaved columns
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VVHOLDHOLD FailuresFailures [29]

• SRAM leakage reduction techniques often apply the 
lowest possible voltage when the bit is not accessed

• If the bit cell cannot retain the proper data at the 
reduced voltage, this is referred to as a VHOLD failure

• VHOLD failures occur when the voltage on the high 
node is lower than the trip point of the latch

• In addition to lower VDD what can cause the high 
node to become lower than the trip point of the latch:
− Variability can increase driver transistor leakage
− Variability can reduce load transistor drive current
− Variability can shift the trip point of the latch
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What’s the problem?

Bit Cell related design techniques

NonNon--Bit Cell related design techniquesBit Cell related design techniques
♦♦ Sense Amps and Data SensingSense Amps and Data Sensing

♦♦ Digital TechniquesDigital Techniques

Conclusion



35

Sense Amps and Data SensingSense Amps and Data Sensing
• Variability has always been an issue for S/A design

− Layout styles which reduce device mis-match
− Common mode noise rejection
− BL coupling noise reduction (twisting, shielding…)
− Design using statistical simulations & analysis 

• At 45nm and 32nm, as device dimensions shrink, 
device mis-match poses much greater problems for the 
SRAM data path designer

• Increased variability also leads to the occurrence of 
very low IREAD bit cell’s

− Power, performance and area may be 
compromised in order to sense these weak bits
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Small Signal SensingSmall Signal Sensing [32, 34]

• Increasing device dimensions appropriately can 
reduce the probability of failure due to device mis-
match by 99%32, but………at a cost:

Power, Performance and Area

Sense Devices

Y-Sel

SAE M7

BL BL

Y-Sel

M6M4

M5M3

M2M1

Column Select Devices

VS

Set Device

• How quickly node VS is 
pulled down to set latch can 

affect the influence of mis-
match between set devices34

• Ideally, VS is brought down 
slowly and after the latch 
starts setting in the right way, 
VS can be pulled to VSS
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• Divergent timing paths for 
signal development and 
sense amp enable

• Transistor variability will 
affect these two paths 
differently

• The SAE timing circuit must 
allow for a slow bit and a fast 
timing path

• Various techniques used for SAE timing control; 
dummy MC’s35, BL and WL RC tracking circuits……..

Sense Amp Enable Timing VariationSense Amp Enable Timing Variation
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• Auto-zero techniques have been described to cancel 
the input offset voltage of various S/A applications:

− DRAM’s
− NVRAM’s
− SRAM ‘s

• The general idea: measure the input offset of the S/A 
and adjust the input levels (voltage sense) or current 
levels (current sense) to zero-out the mismatch

• When applied to SRAM’s these techniques have 
usually added too much complexity, area or delay

• Work continues in the OC area, but another option is 
to completely eliminate small signal sensing……

Offset Cancellation TechniquesOffset Cancellation Techniques
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• Issues related to sense amp device matching can be 
eliminated with large signal (typically single-ended) 
sensing schemes

• Just as the name implies, large signal sensing relies 
on the bit cell to develop a full logic level on the bitline

− Bitlines will be shorter than allowed with small 
signal sensing (for performance reasons)
− The low IREAD bit will still limit performance

• The full logic level is then “sensed” by a transistor, 
inverter or other type of logic gate (S/A enable timing 
no longer limits performance)

Large Signal SensingLarge Signal Sensing
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Large Signal SensingLarge Signal Sensing [37, 38, 44, 45]

• Small signal sensing is not 
scaling well:

− Performance: IREAD and 
SAE timing variability is 
preventing entitlement 
performance improvements 
− Area: in order to minimize 
input offset, s/a area is not 
scaling like logic

• Large signal sensing can 
offer performance and area 
scaling similar to logic
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Review: Sense AmplifiersReview: Sense Amplifiers
• Increased variability leads to larger input offset 
voltage for the SRAM sense amplifier

• As a result Sense Amp area and performance is not 
scaling with technology

• Several design techniques have been described 
which address the increased input offset:

− Selective upsizing of devices
− Adding additional transistors
− More effective timing control of SA enable
− Auto-Zeroing of input offset voltage

• Eliminate sense amps and use large signal sensing
− Best suited to high performance designs
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• The random variability being seen at 45nm and 32nm 
cannot be addressed simply by process modification 
or lithography compensation

• The circuit design techniques described earlier are 
effective ways to allow the SRAM bit cell to continue to 
operate with increased local variation

• Another design approach is to measure and 
compensate for variation with digital techniques

• Digital techniques use on-chip monitors or test 
structures which can evaluate the amount of device 
mis-match in a circuit and then feed this information 
back to the appropriate compensating circuit

Digital Techniques OverviewDigital Techniques Overview
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Digital TechniquesDigital Techniques [27]

• Write margin 
degrades with a strong 
PU device and weak 
PG device

• This circuit monitors 
the relative strength of 
the bit cell PMOS and 
NMOS

• An NWell pumping circuit which controls the bit cell 
NWell bias is raised or lowered

• The Vth of the PMOS can be increased by raising the 
NWell bias voltage or decreased by lowering the bias

WL
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Review: Digital TechniquesReview: Digital Techniques
• Digital techniques generally employ a monitor and 
feedback system

• These techniques are effective in reducing die-die or 
global variation

• Digital techniques can also be used to limit the skew 
between NMOS and PMOS transistors

• Digital techniques are also being used to get a better 
balance between power and performance

• A more centered, less skewed design will be less 
sensitive to local variation and device mis-match  
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ConclusionConclusion
• Transistor variability presents many problems for 
SRAM designers in nanometer-scale technologies

• During the course of this talk I have shown several of 
the innovative techniques being used by SRAM 
designers to meet this challenge

• Different applications will require different solutions:
− Various circuit design techniques offer different 
trade-offs between power, performance and area
− System/architecture options may be available

• Success in the future requires close collaboration 
between process/device/litho/manufacturing teams 
with the SRAM designer
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