

Bonding Technologies for the Next Generation Integration Schemes

<u>Jürgen BURGGRAF</u> – Process Technology Manager, Wafer Bonding (j.burggraf@evgroup.com)

www.EVGroup.com

Outline

- Introduction
 - EVG at a Glance
 - Recent Developments
 - Product Portfolio & Competence
- Bonding Technology for the Next Generation Integration Schemes
 - Introduction
 - Bonding Requirements to meet trends
 - Fusion & Hybrid Bonding
 - ComBond[®]
- Wafer level vs. Die to Wafer integration
 - Overview
 - Process Results
- Summary & Outlook

EV Group | At A Glance

Leading supplier of wafer processing equipment for the MEMS, nanotechnology and semiconductor markets

Founded in 1980 by DI Erich and Aya Maria Thallner. More than 1000 employees worldwide

Headquarters in Austria, with fully owned subsidiaries in the USA, Japan, South Korea, China and Taiwan

EV Group Headquarters St. Florian am Inn, Austria Newly Cleanroom V nearly doubles cleanroom capacity and strengthens capabilities of EVG's NILPhotonics® and Heterogeneous Integration Competence Centers

IEEE - Electronics Packaging 2021 Confidential

EV Group | At A Glance Heterogeneous Integration Competence Center | Launch 2020

ST. FLORIAN, Austria, March 2, 2020

"Heterogeneous integration fuels new packaging architectures and demands new manufacturing technologies to support greater system and design flexibility, as well as increased performance and lower system design costs," stated Markus Wimplinger, corporate technology development & IP director of EV Group. "EVG's new HI Competence Center provides an open access innovation incubator for our customers and partners across the microelectronics supply chain to collaborate while pooling our solutions and process technology resources to shorten development cycles and time to market for innovative devices and applications enabled by heterogeneous integration."

Facility-Infrastructure	IT-Infrastructure	Risk Reduction
Process Development	Process Transfer	

Invite our customers to take advantage from our collaboration frame work

EV Group | At A Glance EVG Heterogeneous Integration Competence Center™

Features

- EVG Heterogeneous Integration Competence Center[™] Open Access Innovation Incubator
 - Fusion and Hybrid Bonding for W2W and D2W Bonds
 - Aligned Metal Bonding
 - Temporary Bonding and Debonding Open Platform
 - Advanced Resist Processing
 - Optical Lithography
 - Maskless Exposure Technology
- EVG's HI Competence Center is designed to help enable new products and applications driven by advances in system integration and packaging. Shown here: chiplet integration by collective die-to-wafer hybrid bonding.
- The Heterogeneous Integration Competence Center™ combines EV Group's world-class wafer bonding, thin-wafer handling, and lithography products and expertise, as well as pilot-line production facilities and services at its state-of-the-art cleanroom facilities.

EV Group | Product Portfolio

INDUSTRY LEADING WAFER PROCESSING EQUIPMENT

LITHOGRAPHY

- Mask Alignment Systems
- Resist Processing Systems
- Integrated Lithography Track Systems

NANOIMPRINT LITHOGRAPHY

- UV Nanoimprint Lithography / SmartNIL[®] Systems
- Hot Embossing Systems

BONDING

- Permanent Bonding Systems
- Temporary Bonding and Debonding Systems
- Bond Alignment Systems
- Fusion and Hybrid Bonding Systems

METROLOGY

- Inspection Systems
- Inline Metrology Systems

EVG I Product Portfolio & Competence

Wafer Bonding

Coating & Lithography

Source: EVG

- → Metal Bonding
- \rightarrow Adhesive Bonding
- → Temporary Bonding & Debonding
- \rightarrow Metrology
- → Lithography for Etching and Metallization
- \rightarrow Bond Frames
- \rightarrow Cavity Exposure
- \rightarrow Bumping

→ SmartNIL®

→ Lens Molding

→ Hot Embossing

 \rightarrow Advanced Resist Processing

 \rightarrow UV-Nanoimprint Lithography

Nanoimprint Lithography

Source: EVG

Integration Schemes are Driven by Global Megatrends

Mobiles, AR/ VR, Sensing Wireless Infrastructure

Autonomous Driving

HPC, AI, Quantum

Consumer

Mission Critical Applications

Bonding Processes to support Heterogeneous Integration

Wafer Bonding Process Fusion / Hybrid Bonding

Definitions, Principle

□ Fusion bonding:

Wafer bonding process based on the adhesion of two flat and smooth surfaces placed in contact occurred due to chemical bonds established between molecules from the two surfaces.

Process consists of two steps: Room temperature contacting of the wafers (pre-bonding) Thermal annealing for strengthening the bond

Plasma Activated Fusion Bonding:

Fusion bonding process using a plasma treatment of the substrate surfaces prior bonding.

The plasma treatment produces changes to the surfaces resulting in higher energy bonds and requiring lower temperature/lower time for the final thermal annealing

U Hybrid Bonding

Hybrid Bonding is a Fusion bonding process using plasma treatment of the substrates prior to bonding whereas the wafer surface consists out of dielectric and metal interconnects on the same surface plane.

Room temperature contacting of the wafers (pre-bonding) Thermal annealing for strengthening the bond and form the electrical contact of the interconnects

Process Flow I Fusion Bonding

- Single wafer cleaning is an optional step for particle removal and it is not required for bond strength enhancement.
- Wafers' pre-bonding have to be performed immediately after wafers preparation (plasma activation and single wafer cleaning) in order to avoid potential contamination of the surfaces.

Fusion Bonding I Mechanism

Fusion bonding:

Wafer bonding process based on the adhesion of two flat and smooth surfaces placed in contact occurred due to chemical bonds established between molecules from the two surfaces.

Process consists of two steps:

- Room temperature contacting of the wafers (pre-bonding)
- Thermal annealing for strengthening the bond

Gap closing due to viscous flow of oxide during high temperature annealing

Plasma Activated Fusion Bonding:

Fusion bonding process using a plasma treatment of the substrates surfaces prior bonding.

The plasma treatment produces changes to the surfaces resulting in higher energy bonds and requiring lower temperature/lower time for the final thermal annealing.

Closing of the gap due to oxidation at low temperatures

Si bulk

Thermal Oxide

H.O

 $Si + H_0 \rightarrow SiO_0 + H_0$

Native Oxide

Fusion Bonding vs. Plasma activated Fusion Bonding

Process Results examples - Plasma activated direct bonding Si/SiO₂ & SiO₂/LiTaO₃

Direct bonding | Specification

Parameter	Va	alue
Surface Micro roughness	sighness < 0,5 nm Ideal < 0,3 nm	
Incoming Wafer Bow / Wrap	≤ 30 μm *400 μm	
Wafer TTV	< 3µm	
Dielectric Material	SiO ₂ , SiC _x N _y , SiO _x N _y ,SiN	
Dielectric Material thickness	> 100nm	
Metal lon	Fe, Cu, Ni Al, Na, K Cr, Zn, Mn Ti, K, Ca	< 5e10 at/cm² < 5e10 at/cm² < 5e10 at/cm² < 5e10 at/cm²
Surface cleaning	SC1 & SC2 cleaning	
Particle	< 50 particles @ 90nm size	
Organic Residues	No	
Post annealing Temperature	200°C	C – 400°C
Substrate Material Silicon, GaAs, InP, G Substrate Material Sapphire, Glass, I Ceramics, Diamond Ceramics, Diamond		s, InP, GaN, SiC, Glass , Piezo, Diamond, etc…

Hybrid Bonding

Hybrid Bonding I Market Segmentation

	Backside	Memory				Logic		
	Illuminated Image Sensor	3D NAND Flash	HBM Stacks	DDR6+	Next Gen. Memory	SoC Par	titioning	Scaling
Device Stack	Photo Diode + DRAM + Logic	NAND Block + Periphery	12+ layer stacking	Peri under DRAM	Peri on MRAM, FeRAM, PCM	SolC	SRAM + Logic	Backside PDN (5nm node)
Bonding	W2W	W2W	W2W and/or D2W	W2W	W2W	W2W an/or D2W	W2W	W2W
Process	hybrid	hybrid	hybrid	fusion	fusion & hybrid	hybrid	hybrid	fusion
Pitch	2µm → 1µm	2µm → 1µm	5µm → 3µm	2µm → <1µm	2µm → <1µm	9µm → 2µm	2µm	By scanner
Maturity	HVM	HVM	R&D	R&D	R&D	Ramp Up	Ramp Up	Ramp Up
Example	38 µm					Salicon 150 Silicon ucogis Silicon 1760 Silicon 1760 Silicon		Tostoge
	Sony (System+)	YMTC (System+)	Xperi (ECTC2020)	IMEC (PTW21)	IMEC (PTW21)	TSMC WoW SoIC	IMEC Collaboration	IMEC Collaboration

Hybrid Bonding I Physical Mechanisms Basics

The gap (few nm) results/can be adjusted due to different removal rates during chemical mechanical polishing (CMP) of Cu and SiO₂.

Hybrid Bonding I Physical Mechanisms & Process Flow

atmosphere.

material and interconnect material

EV Group Confidential and Proprietary presented at IEEE - Electronics Packaging 2021

3D NAND Flash | Hybrid Bonding of Logic Circuitry to Memory Cell

> NAND cell array benefiting from wafer bonded peripheral I/O circuits on top

Advantages:

- Peripheral circuits are processed on separate wafer using logic node FEOL processing allowing higher speed & bit density
- Improved array efficiency thanks to the optimized area usage

Source: TechInsights memory technology update from IEDM18, Apr 2019

YMTC Xtacking

CONVENTIONAL Source: YMTC

Hybrid bonding I Specification

Parameter	Value	
Surface Micro roughness	< 0,5 nm Ideal < 0,3 nm	
Incoming Wafer Bow	≤ 30 µm *400 µm	
Wafer TTV	< 3µm	
Dielectric Material	SiO_2 , SiC_xN_y , SiO_xN_y	
Pad shape	Square	
Top / Bottom Pad size ratio	1:1 or 1:2*	
Pad size	> 500 nm x 500 nm	
Cu dishing	2 - 4 nm	
Cu Pad shape	a, Dishing Top/Bottom Wafer b, Protrusion Top Wafer & dishing bottom Wafer	
Pitch	1 μm />1 μm	
Cu Pad density	< 25%	
Particle	< 50 particles @ 90nm size	
Organic Residues	No	
Post annealing Temperature	200°C – 400°C	

TEM hybrid Cu/SiCN to Cu/SiCN bonding, Top Cu pads are 270nm and bottom ones are 540nm with 1.08 μm pitch. Courtesy of IMEC; Peng et.al.; IITC 2018

Courtesy of ST / CEA LETI (Polis Project); Lhostis et.al.; Proc. IEEE ECTC, 2016

ComBond Oxide free / Conductive bonding interface

Motivation I ComBond Technology

Method Comparison I Plasma activated direct bonding vs. ComBOND

25 www.EVGroup.com

EV Group Confidential and Proprietary presented at IEEE - Electronics Packaging 2021

Bonding Energy I ComBond® vs. Plasma activated Fusion Bonding vs. Fusion Bonding

C-SAM scan

Bond strength > 2.5 J/m² (all measurement positions broken)

ComBond | Substrate Combination Overview

Bonding Materials		
	Si (100)	
	Sapphire	
	GaN	
Si (100)	Ge	
51 (100)	LiNbO ₃	
	LiTaO ₃	
	Мо	
	Si _x N _y	
Si (111)	Si (100)	
51(111)	Si (111)	
Si(SiO ₂)	Si	
	Si(SiO ₂)	
	Si	
SiC (4H)	SiC (4H)	
	Poly-SiC	
Poly-SiC	Poly-SiC	
	InP	
GaAs	Si	
	SiC	
Au	Au	
Cu	Cu	
AI	AI	

Examples of materials combinations successfully tested

Wafer to Wafer vs. C2W vs. collective Die placement

Die to Wafer vs. Wafer to Wafer integration

EV Group Confidential and Proprietary presented at IEEE - Electronics Packaging 2021

Die to Wafer Hybrid bonding | Status

Source: Xperi - 2018 IEEE 68th Electronic Components and Technology

Collective Die Carrier | Process Flow

Collective Die Transfer by ReconstitutedProven ter Die activa equivalentCarrierOxide mail Reuse of ter	chnology tion and cleaning to W2W hybrid bonding nagement carrier feasible	 Error propagation of D2W + W2W alignment Cost of carrier prep, utilization and clean Die thickness needs to be in narrow range 	High Volume production proven for several years

Die to Wafer Hybrid bonding Collective Die Carrier | Overcome Yield challenge

Collective Die Transfer - Bonding Results

Collective Die Transfer | Bonding Results

(\rightarrow)	GaAs & GaN die transfer using Cu-Cu bonding process Die size: 800µm x 800µm Transfer-rate: 100% Total: 1500 Dies
\rightarrow	Si die transfer using adhesive (BCB) bonding process Die size: 800µm x 800µm Transfer-rate: 100% Total: 420 Dies
	SiO ₂ die transfer using direct bonding Die size: 1000µm x 1000µm Transfer-rate: >98% Total: 185 Dies

Collective Die Transfer | Hybrid Bonding

Demonstrator A - 300mm Hybrid Bonding, 5 mm x 7 mm

Demonstrator B - 300mm Hybrid Bonding,10 mm x 14 mm

Collective Die Transfer | Hybrid Bonding - Placement Accuracy

SAM/TEM analyses of transferred Die – Hybrid Bonding

Bonding Process	Die Substrate Material	Die Dimension	Target Substrate Material	Bonding Interface	Bonding Parameter
Hybrid Bonding	Silicon	15 mm x 7 mm	Silicon	CuCu & SiO2/SiO2	RT

High transfer yield including high bonding quality based on Scanning Acoustic microscope images and TEM analyses could be demonstrated after final annealing.

TEM analyses showed Cu grain recrystallization over the bonding interface.

Protection layer removal and die preparation prior to bonding have been identified as most critical process steps for high transfer yield.

TEM Cross section Image - post Die Transfer

Summary | D2W vs. W2W Technolgoy

	D2W Hybrid Bonding	W2W Hybrid Bonding
Status	 Technology building blocks are proven Proven technology Die Activation and cleaning equivalent from W2W hybrid bonding Oxide management Rework on carrier feasible 	 Proven High Volume Technology Wafer activation, wafer cleaning and oxide management are proven to work 24/7 in high volume with highest interconnect yield Wafer to wafer overlay of <100nm proven

EVG's Vision & Mission in Markets Driven by Global Megatrends

Mobiles, AR/ VR, Sensing

Wireless Infrastructure

Big Data, IoT

HPC, AI, Quantum

Consumer

Mission Critical Applications

EVG Contributions Bonding Technology

Heterogeneous & Chiplet Integration Temporary **Bond/ De-Bonding**

Nano – Imprint Lithography

Digital Maskless Lithography

Field Proven High Volume Manufacturing Technologies

HHH EV Group Confidential and Proprietary presented at IEEE - Electronics Packaging 2021

Thank You for Your Attention!

Contact person: Jürgen BURGGRAF – j.burggraf@evgroup.com EV Group, DI E. Thallner 1, 4782- Sankt Florian am Inn, AUSTRIA

Data, design and specifications may not simultaneously apply; or depend on individual equipment configuration, process conditions and materials and may vary accordingly. EVG reserves the right to change data, design and specifications without prior notice. All trademarks, logos, website addresses or equipment names that contain the letters or words "EVC" or "EV Group" or any combination thereof, as well as the following names and acronyms are registered trademarks and/or the property of EV Group. ComBond®, CoverSpin[™], EZB®, EZ Debond®, EZR®, EZ Release®, GEMINI®, HERCULES®, HyperIntegration®, IQ Aligne®, NanoAlign®, NanoAlign®, NanoSpray[™], NIL-COM®, NILPhotonics®, OmniSpray®, SmartEdge®, SmartVitew®, The Triple "i" Company Invent-Innovate-Implement®, Triple to Accompany, and company names may be registered trademarks of their respective owners.