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Presentation Overview

▪ Electromigration (EM) and challenges in EM study

- generalized EM failure mechanism under DC in solder joint

- motivation for studying non-DC EM

▪ Non-DC EM Testing

- consideration points of EM under DC, pulsed DC, AC

- testing circuits

▪ Mechanism of EM failure under non-DC conditions

- AC: classic mechanism and results

- pulsed-DC: new failure mechanisms

▪ Summary and Implications
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▪ Electromigration (EM)

– directional diffusion of atoms driven by high density current

– known to induce failure in solder interconnects and become 
a major reliability threat due to aggressive miniaturization

– Limiting long-term reliability of microelectronic package

▪ EM reliability prediction and challenges

– Adapt Black’s empirical model

– Failure mechanism details are still not well understood

– Testing can bias the failure mechanism, leading to the 
erroneous reliability prediction w/o correction

– EM under non-DC conditions are rarely studied w/ difficulty 
in experimental testing 

Electromigration and Research Challenges

𝒇𝒍𝒖𝒙 𝑱 ≈ 𝒋 × 𝑫𝟎𝒆𝒙𝒑(−
𝑬

𝒌𝑻
)

𝒕𝒕𝒇 ≈ 𝑨𝒋−𝒏𝒆𝒙𝒑(
𝑬

𝒌𝑻
)

j: current density
E: diffusion activation energy 

n: current exponent
E: EM activation energy 
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▪ Understanding may need completely different
approaches from thin film interconnects

– EM in thin film interconnect occurs in highly 
homogeneous system: simple structure, one 
composition, negligible joule heat

– Pulsed DC and AC effect is reasonably well understood 
(damage relaxation mechanism)

▪ EM in solder is complex process

– Multiple components with different EM/diffusion rates

– Interface reaction is a part of failure mechanism

– Considerable level of joule heat can be involved

– Thermal stress can complicate the failure process

Non-DC EM in Solder Joint
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AC-EM: reversed flux

Thin film interconnect:
homogeneous system

Solder Joint:
heterogeneous system

flux is not necessarily reversible
Or damage can be repaired
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▪ Of practical and fundamental importance

– EM load on device can be non-DC (pulsed DC, AC)

– Can reveal key but hidden parameters to consider

– Understanding is seriously lacking for EM in solder joints

▪ Existing studies suggests

– Studies are mostly based on classic EM theory 
(extension of DC to PDC or AC)

– W. Yao and C. Basaran (2013) computed PDC effect

higher damage rate at higher frequency

(because damage relaxation during “off” cannot occur)

– Z. Zhu, Y. Chan, F. Wu (2019) studied AC effect

faster growth of IMC under AC 

(AC load was not pure AC but was sinusoidal)

Failure by Non-DC EM: Past Studies
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W. Yao and C. Basaran (2013) Comp. Mat. Sci.
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▪ Wafer-level chip scale package (WCSP) 
– One of the worst EM resistance structures

– More prone to stress assisted EM failure

– Easier to do microstructural EM mechanism study

▪ Sample structure
– 5x5 SAC solder ball grid array (BGA)

– Consists of Cu UBM, SAC solder ball, and Cu lead-frame

– Various thickness of Cu UBM pads (18-50µm Cu UBM)

– 3 SAC solder bumps are connected for testing

– Assembled into PCB

▪ Sample preparation
– WCSP samples provided by Texas Instruments for research

– PCB designed at UT Arlington

– WCSP assembled to PCB at SVT

Selected Sample for Research
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▪ Cu EM controls the failure kinetics

– Cu EM occurs preferentially and protects Sn from EM, making UBM 
to dissolve and thick Cu6Sn5 to accumulate at the anode

– Current crowding at the electron entering corner results in a faster 
dissolution of UBM

– Voiding starts at the corner and grows to the opposite end of UBM

▪ E and n of EM failure

– Activation energy (E) is related to the Cu diffusion

– n represents void nucleation and growth under current crowding 
(n>2)

▪ Contributing factors

– UBM thickness: affects amount of Cu supply and thermal stress 
effect

– Geometric constraint: affects current crowding and thermal stress 

EM Failure Mechanism under DC
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▪ Typical failure microstructure

– Failed by void nucleation and propagation at the cathode side of solder bump

– Thick Cu6Sn5 IMC forms at the anode side while UBM is dissolved away

– Current crowding effect exists (void starts at the entrance of electron)

Microstructural Failure Mechanism
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▪ EM failure under DC

– Isothermal condition (with joule heat included)

– Kinetic mechanism is simpler and can be descried using the 
Black’s model.

▪ EM failure under AC

– If square AC, isothermal condition (the same JH to DC)

– Damage develops by asymmetry flux between “forward” and 
“reverse” EM. 

– Failure may develop faster at lower frequency when the reverse 
EM time is longer than the time to reverse the damage.

▪ EM failure under pulsed DC

– Usually “on-time model”: (no recovery is considered)

– Temperature is not constant at low frequency

– Failure mechanism can be complicated with pulsing temperature

Factors to Consider for Non-DC EM Failure
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▪ AC constant current power supply is not available

▪ Design an AC constant current generating PCB module 
(one of the most challenging tasks)

▪ Based on a H-bridge circuit consists of
– 4 MOSFETs, 1 MOSFET driver-2 outputs w/ opposite polarities

– 1 Arduino as a pulse-width modulation

▪ Turns on A MOSFETs to flow a forward AC polarity

▪ Turns on B MOSFETs to flow a reverse AC polarity

AC Constant Current Module Schematics

A B

AB
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AC EM Test
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▪ Possible failure behaviors

– No temperature fluctuation

– If EM damage is not repairable, 

AC EM failure rate is similar to DC (damaging in both 
forward and reverse direction)

– If EM damage is reparable, 

Low frequency AC: longer failure time than DC (partial 
repair)

High frequency AC: not fail for very long time due to 
near complete damage repair mechanism

▪ Failure kinetics may be developed by extending the 
Black’s model.

▪ But, “ repairability” may not be only contributing 
factor
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Failure Behavior under AC-EM Conditions

▪ Results are opposite to the expected

- high frequency (10 kHz) fails faster than 
low frequency (0.1 Hz); true for both at 
DF=50 and 75%.   

- Asymmetric AC (75% DF) fails faster than 
symmetric AC (50% DF).

- DC fails the fastest
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Microstructural Failure Mechanism under AC: 10KHz

▪ Solder joint shows significant level of Cu injected 
into solder joint

- significant fraction of Sn-solder transformed into 
Cu6Sn5.

- faster failure at high frequency is resulted by 
excessive growth Cu-Sn IMCs.  

▪ Cu EM at Cu/Sn interface is not reversible

- EM assists Cu dissolution but cannot reverse it.

- EM in IMC and Cu is negligible   
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▪ “Crowbar” circuit

- Function generator controls MOSFET driver

- When MOSFET is closed, the test current bypasses samples

- When MOSFET is opened, the test current to samples

Pulsed DC EM Test: Circuit
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Hidden But Key Factor: Temperature
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▪ Measure at various PDC frequency using RTD

– Temperature change plateaus around 0.005 Hz (200s 
period) at 14 °C

– 7°C change at 0.1Hz

▪ DUT Temperature dependence on frequency

– T is low and constant at high frequency (>100Hz)

– T pulsates along with pulsing current (<100Hz)

▪ Pulsating temperature will impact failure

– Thermal stress becomes a factor 

– The failure may be assisted by the thermal fatigue
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▪ Difference in Joule heat (JH) (resulting T 
difference) induces compressive stress on DUT and 
tension on surroundings

– DUT is subjected to higher local JH than the 
surroundings

– Higher local JH on DUT causes larger expansion than 
supporting bumps do, resulting in compression on 
DUT and tension on surroundings

Source of Thermal Stress
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▪ At f>10kHz: different from the expected

– Failure rate is excessively slow (unable to induce 
failure even after 10k hours at 50% DF.

– 14C lower DUT temperature may provide partial 
explanation

– Ton~Toff may allow more active damage relaxation.  

▪ At f=0.1Hz: different from the expected

– 75% DF produces more damage than DC

– Reduction in DF makes failure rate to be 
exponentially  delayed.  (the reduction is again more 
than T effect)

▪ Kinetics does not follow the Black’s model

Failure Behavior at Pulsed EM Conditions
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EM Failure Signal under Pulsed-DC Load
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▪ Failure Signal

– Resistance change shows 2 stage EM failure development under pulsed DC

– The first stage induces more damages but the failure slows down at the second stage.

– The transition to second stage occurs faster at low DF.   
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Cracking Assisted EM Failure under PDC
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▪ Narrow crack through Sn in 75% DF suggest involvement of mechanical fatigue

– Not conventional EM failure mechanism

– Evidence that the thermal fatigue affects the failure w/ pulsating temperature.  

▪ Crack also exists at the supporting bumps
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▪ Thermal Fatigue + EM under pulsed DC
– Most notable at DF=75%

– Conventional EM voiding combines with mechanical fatigue from thermal fluctuation

– When stress fluctuation exceeds the yield strength, plastic deformation occurs, activating fatigue

Failure Acceleration by Thermal Fatigue
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▪ Fine grain boundaries indicate a recrystallization of solder bump, removing fast EM 
path in Sn grain.

Failure Deceleration by Recrystallization
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Overall Failure Mechanism at Low Frequency 

▪ Two mechanisms in competition

– Failure acceleration: thermal fatigue (more intense at high DF)

– Failure suppression: recrystallization (more intense at low DF)
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▪ Superplasticity
– Extrusion of solder mass driven by uneven compressive stress

– Excessive extrusion becomes possible due to superplastic of 
solder 

– Solder becomes superplastic by dynamic recrystallization 
effectively removing work hardening of solder

– Unusual to see this level of deformation because Sn is BCT 

New Failure Mechanism by Superplasticity
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▪ Sn gets extruded due to uneven stress

– Evidences the thermal stress and superplasticity of solder

– Danger of a short circuit

Ratcheting Failure by Extrusion of Solder 
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▪ Generally understood EM failure mechanism in is not valid for pulsed DC 

– Stress and its pulsation affects the failure rate and failure mechanisms

– Thermal fatigue can be included in the failure process at low frequency.

– Recrystallization is also possible at low frequency. 

– Ratcheting failure is possible only with solder being superplastic

– High frequency testing may bring new surprises (testing is in progress).  

▪ Irreversible reaction of Cu at Cu/solder interface dictates the failure rate
– Unlike expectation, EM failure does occur and can be serious reliability issue.  

– Damage starts as a format of extensive growth of IMC growth.  

– Damage repair is not as effective as is seen in thin film interconnects.  

– Needs more studies for better understanding.  

Summary Experimental Observations
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