

On-Shoring the Next Generation of Advanced Packaging

February 17, 2022

Charles Woychik, Ross Miller, Bradley Ferguson and Clifford Sandstrom*

SkyWater Technology Kissimmee, FL 3473 *Deca Technologies Tempe, AZ 85284

Agenda

- SkyWater History & Background
- Chiplets 3D Heterogeneous Integration
- SkyWater AP Offerings
 - Si-Interposers
 - Hybrid Bonding Interconnect
 - Wafer Level and Fan-Out Packaging
 - Solder bumping & Assembly
- Roadmap
- Summary

Agenda

- SkyWater History & Background
- Chiplets 3D Heterogeneous Integration
- SkyWater AP Offerings
 - Si-Interposers
 - Hybrid Bonding Interconnect
 - Wafer Level and Fan-Out Packaging
 - Solder bumping & Assembly
- Roadmap
- Summary

We streamline the concept to market journey for micro- and nanotechnologists.

Technology as a Service (TaaS)

Innovation as a Service

Manufacturing as a Service

We are the only **U.S.-owned** pure-play foundry.

Extending a legacy of manufacturing excellence to meet the industry's needs in a post-Moore's Law reality

2005

Cypress

2008

SkyWater received DMEA Cat 1A Trusted Accreditation

2017

SkyWater

SkyWater and MIT selected for DARPA 3DSoC program

2018

\$170 M rad-hard technology and building expansion announced

2019

3-year anniversary of SkyWater completion of Cypress ToP contract

OPERATION

200 mm equipment 91,000 ft² Cleanroom Class 10 + SMIF 10,000 30 ML CMOS wafers or 50,000 MOSFET wafers per month 90 nm+ feature geometries

CERTIFIED

ISO9001 / IATF16949 Automotive Certified
ISO13485 Medical Certified
ISO14001 Environmental Certified
DMEA Cat 1A Trusted
ITAR and Secure Processing Supported

OPERATION

200 mm equipment Size: 109,000 ft² total 26,000 ft² of class 1000 9,400 ft² of class 10,000

NOTES

Site added to operation Feb 2021 DMEA Cat 1A Trusted – pending, planned late 2021 Facility will enable custom advanced packaging solutions

SkyWater is Defining a New Category

Partnership Pathways: Prototype to Production

Research

Commercialization

Primary Activity

Technology Readiness & Manufacturing Readiness

Operating & Business Model

Example Start Points

Advanced Technology Services (ATS)

R&d:

Proof of Concept Tech Demonstration Process Development

TRL / MRL: 3~6

- NRE
- Tooling

Qualification

r&D:

Maturing & Qualifying Capabilities, Process Flows, and Products for Scale

TRL / MRL: 6~8

- MPW
- NRE
- Tooling
- Early Access Program
- Flow Transfer

Photonics

Wafer Services

r&d:

Mfg. Volume Production

TRL / MRL: 8~9

- 1x Setup
- Per Wafer

Mixed-Signal

Power Discrete

YOUR Idea

- Understand the device performance objective
- Review device architecture concepts
- Jointly brainstorm possibilities
- · Identify end goal

Detailed Project Scoping & Setup

- Align on project objectives
- Align team resources with timeline requirements
- Establish interface requirements
- · Establish business terms
- Choose fixed-price or consumption model
- · Identify tool hosting needs

Co-Create Your Ideas

- Customer and SkyWater team execute development work
- Continuous learning and idea generation
- Data exchange per customer requirements
- Quarterly reviews
- Customer defined milestones

Capabilities for Advanced Integrations

Agenda

- SkyWater History & Background
- Chiplets 3D Heterogeneous Integration
- SkyWater AP Offerings
 - Si-Interposers
 - Hybrid Bonding Interconnect
 - Wafer Level and Fan-Out Packaging
 - Solder bumping & Assembly
- Roadmap
- Summary

Drivers for Chiplet Integration

SOC

End of Cost Advantage of Moore's Law

Shared Package

- Difficult
- Very Costly
- Low Initial Die Yield

Pros

- SWAP
- Flexibility
- Optimized Performance
- Lower Power
- Shorten Time-to-Market
- Gordon Moore predicted that eventually one would go to packaging individual chips
 Original paper.
 - Thermal optimization
- Spin multiple products faster

Cons

- Create System Integration Ecosystem (Supply Chain and Business).
- KGD Known Good Die
- Establish a pull by customers
- Standards
- Software Design Tools
- Yield Loss Ownership

Pathway to 3D Integration (Fan-Out)

Conventional Flip Chip Attach

Pathway to 3D Integration (Interposer)

Conventional Flip Chip Attach

2D Interposer Integration

3D IC Integration

Agenda

- SkyWater History & Background
- Chiplets 3D Heterogeneous Integration
- SkyWater AP Offerings
 - Si-Interposers
 - Hybrid Bonding Interconnect
 - Wafer Level and Fan-Out Packaging
 - Solder bumping & Assembly
- Roadmap
- Summary

Partnership with BRIDG to Develop Si-Interposers

Heterogeneous Integration & Advanced Packaging

Establishes a domestic silicon interposer capability for the industrial base

SkyWater Si-Interposer

Phase I: Metallization buildup layers.

Phase 2: Via formation

Si-Interposer Assembly – BRIDG & SWFL

Schematic Courtesy of BRIDG

- Build Si-Interposer at SWFL.
- BRIDG and SWFL work with domestic supplier on first phase of assembly development. Goal is to have capability at SWFL.
- Generate reliability test data with Navy Crane.

Hybrid Bonding Interconnect Formation

- Dielectric bonding at room temperature
- Metal interconnect formation at elevated temperature
- Thermal annealing of metal pads

Source: Xperi

Source: J Mudrick, et.al., MESA, Sandia National Laboratories

FIB-SEM images of metal pads after thermal annealing

Hybrid Bonding Interconnect

- Shortest connections with face-to-face chip bonding
- Outstanding performance compared to solder and micro-bumps

Source: Applied Materials, 2021 ICAPS and Packaging Master Class

Hybrid Bonding Die to Wafer (D2W) process flow and equipment

Source: SUSS

Hybrid Bonding Die to Wafer (D2W)

Packaging System Interconnect Scaling Roadmap

- Advanced micro bumps and pillars are structures with a 40-um pitch (25 um pillar). Going forward, the industry can scale bump pitch to 20 um
- The industry needs a new interconnect solution beyond bumps and pillars
- Enabling Cu/Cu Hybrid bonding to stack memory on memory or memory on logic. This process is challenging and involves complex fab-level processes
- Hybrid bonding enables 250K to 1M interconnects per square millimeter
- 40 um pitch micro-bumps enables ~600 interconnects per square millimeter

Source: Applied Materials, 2021 ICAPS and Packaging Master Class

Source: AMD, Hot CHIPS

conference 2021

Evolution of Bonding Methods

Bonding Method	C4 FC (Contolled Collapse Chip Connect)	C2 FC (Chip Connect)	TC/LR (Local Reflow) FC	TC FC
Schematic Diagram		13	I	I
Major Bump Pitch Range at Application	> 130 um	140 um ~ 60 um	80 um ~ 20 um	< 30 um

Source: SUSS

Hybrid Bonding Interconnect with 1 μm pitch

Source: AMD, Hot CHIPS conference 2021

Deca's M-Series™ Fan-Out Basics

- Chips-first, chips-up fan-out technology
- Fully encapsulated active device region (key differentiator)
- Production yields > 99.85%+ on over 3 million shipping per day
- Planar surface enables scaling to fine CDs
 - 5µm line & space in Gen 1.5
 - 2µm in Gen 2
- Adaptive Patterning® for high yield & high interface density
 - 45µm bond pad pitch in Gen 1
 - 20µm in Gen 2
 - Next closest competitors: TSMC InFO at 55μm & Intel EMIB at 45μm
- 300mm wafer format in high volume production for Gen 1
- 600mm square panel starting production in 2021 for Gen 1

M-Series Structure – Planarity key to 3DHI

Cycles to Fail

Basic Package Construction of M-Series

BLR Comparison of M-Series versus WLP

- Lowering of e-CBI (chip board interaction) stresses applied to device due to molded stress buffer layer between the device surface and the PCB
- Typical 200% BLR performance improvement over traditional fan-in wafer level packaging (WLP)

Customer Adoption Examples of Fan-out

Apple Applications Processor Device in InFO PoP iPhone 12 Pro Max 5G

Prismark, CUSTOM TEARDOWN ANALYSIS: APPLE A14 Report No. 6771 - January 2021

https://www.xilinx.com/support/documentation/white papers/wp527-info-cameras.pdf

Significant electrical signal integrity benefits of fan-out vs. Si interposer or flip chip on substrate

FEOL Silicon Area Reduction From Pitch Reduction

> 10% reduction in advanced silicon die size

Competitive Device Interface Pitch Density Comparison

Cu Pillar Flip Chip (flip chip on substrate)

TSMC InFO (Chips first fan-out) M-Series Gen 1 (Chips first fan-out)

EMIB (Hybrid chips in substrate)

Higher density bond pad pitch

M-Series Gen 2 (Chips first fan-out)

Flip Chip Cu Pillar

Die pad pitch: 100 µm IO per mm²: 105

TSMC InFO

Die pad pitch: <u>55 μ</u>m IO per mm2: 314

Deca M-Series Gen 1 Die pad pitch: 45 µm

492

IO per mm2:

Intel EMIB

Die pad pitch: 45 µm (36 µm*) IO per mm2: (806)

Deca M-Series Gen 2.1

Die pad pitch: 20 µm IO per mm2: 2,518

> #1 in high density

*https://www.anandtech.com/Show/Index/15980?cPage =2&all=False&sort=0&page=1&slug=intel-next-gen-10micron-stacking-going-3d-beyond-foveros

M-Series Gen 2 delivers order-of-magnitude density increase

Deca's M-Series Technology Roadmap

Gen 1 2018 →

Codec

RF

PMIC

Single-die

- · Protected fan-in
- Fan-out

IoT Device

Dual PMIC

- Integrated PMICs

Gen 1.5 2021 →

3D PoP - Mobile Applications Processor

Fan-out SoC - Advanced node silicon

Embedded Bridge Die Interposer - HBM intg

Passive & Active Interposers - CPU, GPU, AI

- Existing lithography & AOI equipment
- · Optimized direct & indirect materials
- · Enhanced process flows for 3D integration
- New design rules supporting 3D

Gen 2 (SkyWater Fl.)

2022 →

20 µm bond pad pitch 2 µm lines & spaces Up to 5 layers of RDL Full frontside & backside routing

- 3D PoP
- Fan-out SoC
- Embedded Bridge Die Interposer
- · Passive & Active Interposers

Ultra-High Density (UHD) Integration

- New lithography & AOI equipment
- Further material optimization for 5 µm vias
- New design rules supporting 2 μm RDL
- · Adaptive metal fill for up to 5 layers of RDL

Agenda

- SkyWater History & Background
- Chiplets 3D Heterogeneous Integration
- SkyWater AP Offerings
 - Si-Interposers
 - Hybrid Bonding Interconnect
 - Wafer Level and Fan-Out Packaging
 - Solder bumping & Assembly
- Roadmap
- Summary

Capabilities for Advanced Integrations

Wafer to Wafer

Hybrid Bonding

Full wafer

Silicon Interposers w/TSV

Die to Wafer

Hybrid Bonding

Diced wafer

Hybrid Bonding

Wafer Level and Fan-Out Deca's M-Series Gen 2

2024

Agenda

- SkyWater History & Background
- Chiplets 3D Heterogeneous Integration
- SkyWater AP Offerings
 - Si-Interposers
 - Hybrid Bonding Interconnect
 - Wafer Level and Fan-Out Packaging
 - Solder bumping & Assembly
- Roadmap
- Summary

Summary

- SW AP Roadmap consists of the following core technologies:
 - Fan-Out Packaging (Initially wafers, migrating to panels)
 - Si-Interposers
 - Glass Interposers
 - Hybrid Bonding Interconnect
- Maintain technical leadership for all AP areas to ensure our customers have access to a domestic state-of-the-art AP facility.
- Provide solder bumping services (Sn-Pb and Pb-free) and solder assembly services.
- SW is working with our partners to enable a domestic Ecosystem for AP.

Charles Woychik, Sr. Director Advanced Packaging Platforms

Chuck.Woychik@skywatertechnology.com

Are you working on an idea? Let's talk. Get in touch today!

For more information: www.skywatertechnology.com

Contact SkyWater: swfoundry@skywatertechnology.com

SKYWater

