IEEE Electronics Packaging Society Seminar

Challenges & Innovations in Microprocessor Power Delivery

Kaladhar Radhakrishnan Intel Fellow

Outline

Power Delivery 101

intel.

- Microprocessor Power Delivery Overview
- Power Delivery Network & Decoupling Capacitors
- Microprocessor Scaling Trends
 - Break down of Dennard Scaling
 - Introduction of Multi-core Architecture
- Integrated Voltage Regulators
 - Types of IVR
 - Fully Integrated Voltage Regulator (FIVR)
 - Technology Ingredients for High Voltage IVR
- Summary

IEEE Electronics Packaging Society Seminar

intel.

Microprocessor Power

- Power is consumed by a microprocessor due to the charging and discharging of various parasitic capacitors in a CMOS circuit
- The different types of parasitic capacitance in a circuit are
 - · Gate to source capacitance
 - Gate to drain capacitance
 - Drain to body (source) capacitance
 - Interconnect (wire) capacitance
- Each capacitor is charged and discharged during a clock cycle

intel.

- The buck regulator on the MB has a finite response time which can be modeled as an effective inductance
 - The inductance of the path from the platform VR to the die is of the order of ~1nH
- However, the typical dl/dt for a microprocessor is around ~20A/ns
- Capacitors are used to manage the short-term current draw before the power supply on the MB can respond

IEEE Electronics Packaging Society Seminar

· Multiple stages of decoupling capacitors are used to manage the transient current

Impact of Voltage Droop on F_{max} F_{max} is a function of gate delay and RC delay $F_{max} \alpha \frac{1}{\tau_{gate} + \tau_{RC}}$ Gate delay has a strong dependence on gate length and voltage $\tau_{gate} \alpha \frac{L}{V_{cc}}$ RC delay is a function of the resistance and τ_{c} capacitance of the on-die interconnects $\tau_{RC} \alpha RC$ τ_{RC} ٧, Fmax can be increased by • Reducing gate length (L) τ_G • Minimizing voltage droops (maximize Vcc) • Reducing temperature (reduces R) IEEE Electronics Packaging Society Seminar

intel.

Multi-Core Architecture

- Classical or Dennard Scaling (1970s to early 2000s)
 - · Frequency scaling to maximize performance
 - Scale V_{th} & device dimensions
 - Faster (& leaky) transistors enable higher frequency
 - · Increased leakage and active power
- Shift to Multi-Core (mid 2000s onwards)
 - Slow down V_{th} scaling to control leakage
 - · Use process improvements to control leakage as well
 - Slow down frequency scaling
 - Add more cores for performance

IEEE Electronics Packaging Society Seminar

intel. 20

Monolithic Scaling Challenges					
Monolithic SoC		_	Heterogeneous System		
System on a Chip			Core IP	Memory Power	
Metric	Monolithic SoC		Metric	Heterogeneous System	
Yield	Inverse relationship to die size		Yield	Good due to small die size	
IP Customization	Not possible		IP Customization	Each IP is on an optimized	
Performance	Good			node	
Post-Silicon	Significant debug work		Performance	Need to manage D2D IO	
Cost	High on latest process nodes		Post-Silicon	Fewer bugs, improved TTM	
			Cost	Overall cost is lower	
IEEE Electronics Packaging Society Seminar					31

