

Next–Generation System Design Challenges and Opportunities

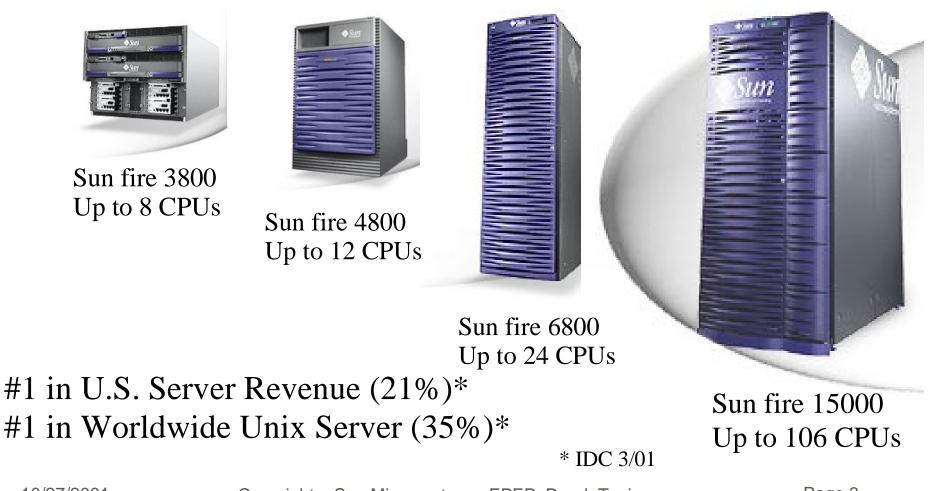
By Derek Tsai

Sun Microsystems

10/27/2001

Copyright - Sun Microsystems, EPEP, Derek Tsai

Page 1



Contents

- Sun's Mid–range to High–end servers and market
- Keeping the scores metrics of success
- Map out the value chain
- Identify the Bottlenecks
- Key challenges
- Key opportunities
- Conclusions

Sun's Mid-range to High-end servers: current line-up

10/27/2001

Copyright – Sun Microsystems, EPEP, Derek Tsai

Page 3

Server Markets

Fueling worldwide productivity growth

Industries

- Manufacturing
- Telco
- Service Provider
- Retail
- Government
- Finance
- Education
- Healthcare
- Entertainment/Media

Markets Segments

- CRM
- HPC
- Technical Development
- Collaborative
- Data Warehouse/Bus. Intel.
- Web Services
- Portal Computing
- E–Marketplaces
- Mobile
- OLTP
- ERP
- Supply Chain Management

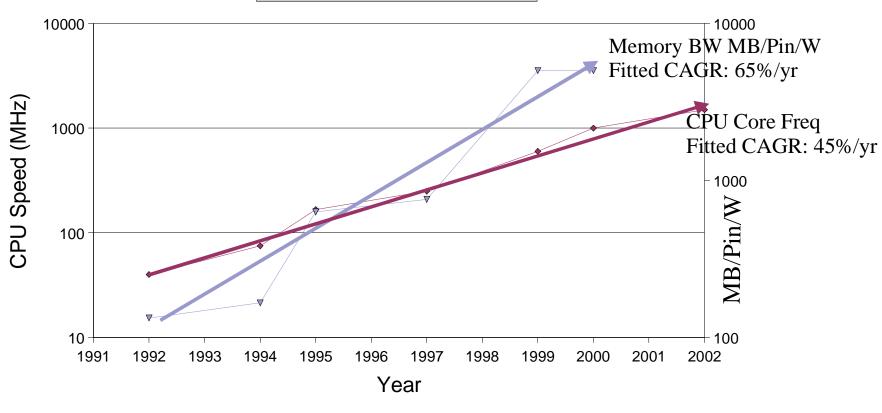
Server System Design Challenges -From 30,000 ft

- Costs
 - Competitive forces (dot com burst, Wintel servers)
 - Perception of Benefits (Wintel servers, bad economy)
- Thermal/Power management:
 - From the box out (2x to 3x of power density/generation)
 - From the data center in (Max'ed out on cooling, power shortage)
- Scaling Up of performance
 - Stressing interconnect bandwidth
 - More modules \rightarrow more interconnects
- Boosting RAS (Reliability, Availability, Serviceability)
 - Complexity ↑, Heat ↑, Bandwidth ↑, Interconnects ↑

Keeping the scores – metrics of success

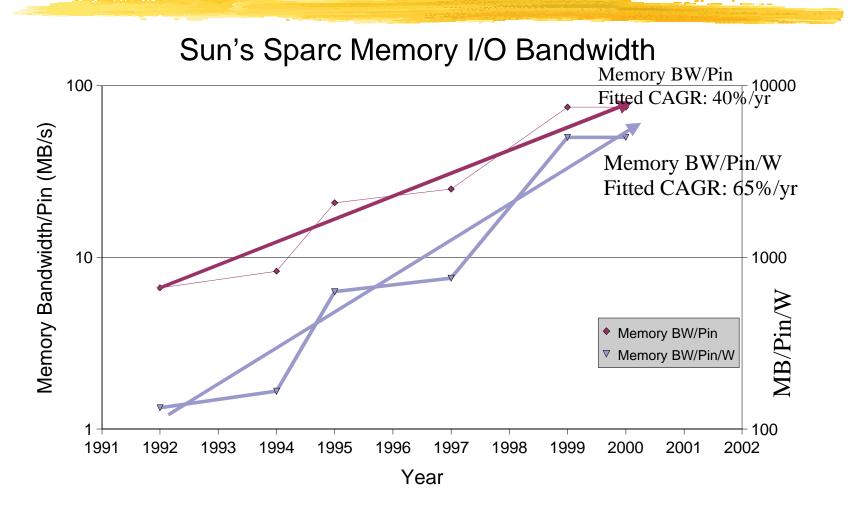
- Why keep scores/metrics?
 - Too easy to over-design and add unnecessary costs
 - De-mystify the signal-integrity black magic
 - Capture Signal–Integrity Engineers' value–add (not a prohibitor)
 - Know the trend to reduce risks
 - Sun's Six–sigma initiative (Sun Sigma)

- Possible metrics:
 - I/O Bandwidth
 - I/O power consumption
 - I/O noise margin
 - Power noise
 - Pin/route density
 - Power density


- Ultimate benefit for systems
 - I/O bandwidth/throughput
 - Latency (dominated by placement, architecture, and speed of light)
- Costs
 - \$ (component and implementation)
 - power/thermal
 - Noise (electrical and Electromagnetic)
 - Packaging (pin/route density, material, & etc.)
 - Reliability

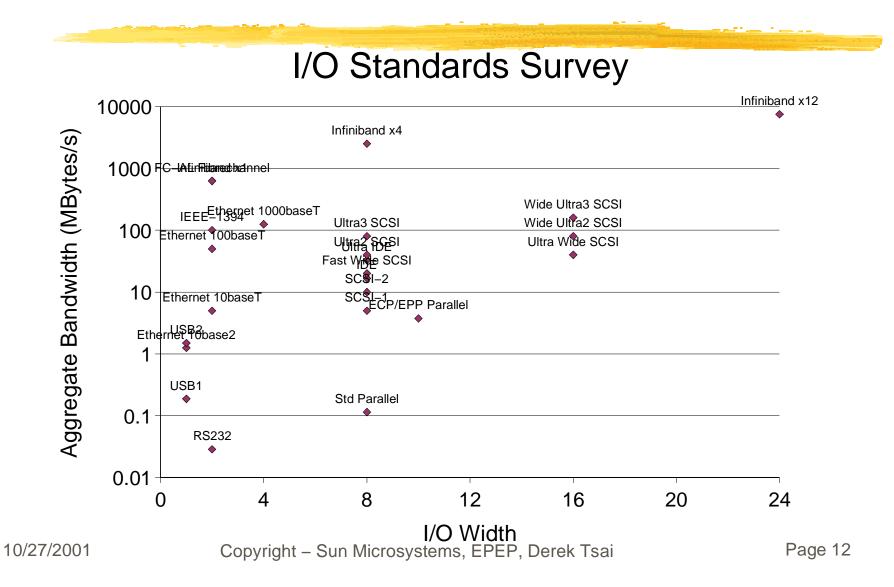
- Proposed metrics for SI/Packaging Engineers:
 - I/O bandwidth / pin / Watt consumed / \$ AND
 - Meeting spec'ed reliability
 - Meeting EMI regulation
 - Having sufficient noise margin for all component and manufacturing process corners
 - Δ % Operating Freq Margin / Δ \$
 - AND same conditions as above

Sun's Sparc CPU Speed & I/O Bandwidth

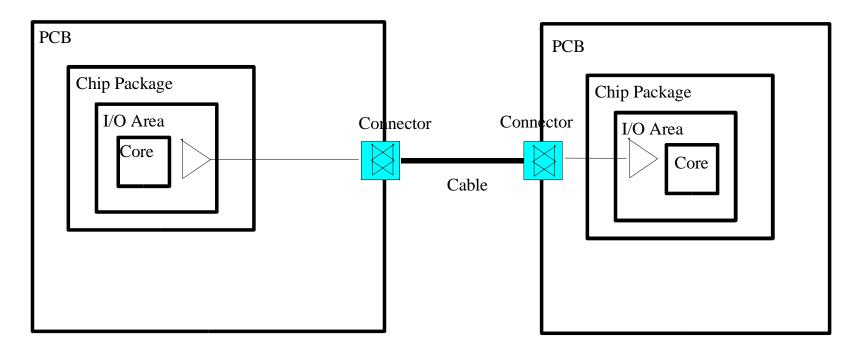


Copyright – Sun Microsystems, EPEP, Derek Tsai

Page 10



Copyright – Sun Microsystems, EPEP, Derek Tsai


Mapping the value chain of system design

- Why map the value chain?
 - Determine the bottleneck and invest to remove
 - Bottlenecks move around for each generation
 - Reduce the risks
 - Reduce the costs of over-design
 - Because it's a SYSTEM

Mapping the value chain of system design

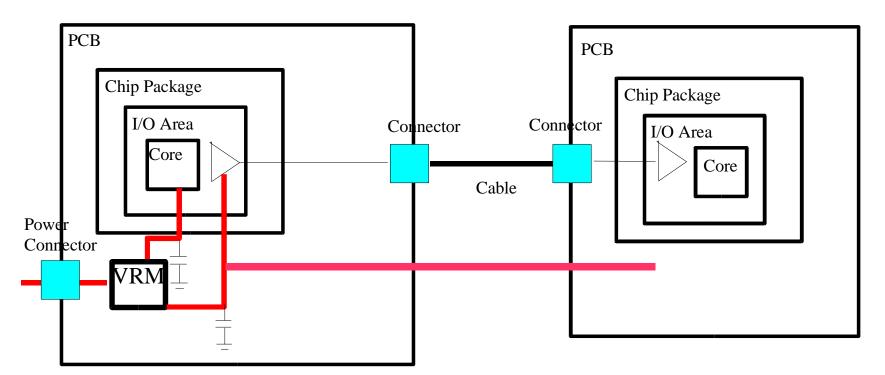
System Level: Signal Path

I/O Cell, ESD , Chip package, PCB trace, vias, connector, transceivers, cables

10/27/2001

Copyright – Sun Microsystems, EPEP, Derek Tsai

Identifying the bottlenecks


Signal path bottlenecks

- I/O Cell Design: from Global Sync to Source Sync
- Simultaneous switching I/O noise
- ESD load
- Package trace
- Package/PCB interface
- PCB trace loss and routability
- PCB vias
- Signal reference
- Transceivers
- Cables (copper and optic)

Mapping the value chain of system design (Cont'ed)

System Level: Power Path

Power connector, VRM, Capacitors, PCB planes, on-package caps, on-die caps

10/27/2001

Copyright - Sun Microsystems, EPEP, Derek Tsai

Identifying the bottlenecks (Cont'ed)

- Power path bottlenecks:
 - Power connector inductance & resistance
 - VRM power transient, density
 - PCB Power spreading inductance
 - Package Power
 - Core Power power transient, package resonance
 - I/O Power return reference, SSN
 - Power across domains cabling

Key Challenges

Interconnect density

- Mechanical:
 - Qualification of connectors, pcb and packages
 - Finding the failure modes (too many interfaces)
 - Assembly and handling
 - Routing and pin escapes
 - Lead–free
- Electrical:
 - Maintaining the signal quality: lossiness, via loss, crosstalk, return paths, SSN, Bit Error Rate, and etc.
 - EMI
 - Diagnostics and testability
 - Observability: design for debug and measurement
- Economics: total costs of ownership/design

Key Challenges (Cont'ed)

- Power and Cooling
 - Delivering power:
 - Power architecture (staging/budgeting) critical
 - Optimal use of decoupling capacitors: VRM, board– level, package–level, and chip–level.
 - Availability and accuracy of capacitor models
 - Thermal:
 - Efficient use of power justify the demands
 - E star mode

Key Challenges (Cont'ed)

Design Complexity

- Model availability and accuracy:
 - SPICE vs. IBIS vs. others: methodology wanted
 - Frequency-dependent interconnect models
 - Resource drain to provide accurate models

Simulation:

- HSPICE vs. SpecctraQuest vs. XTK
- What to look for: timing, error rate, eye diagram
- What to include in simulation: too many variables, information overload – determine what are essential.
- Tedious must deploy computer tools/scripts to excel

Key Challenges (Cont'ed)

SI Engineering Resources

- Lack of hands—on debug experience: video game culture creates lots of naïve engineers – lack "instincts"
- Specialized to be competent, but not too specialized to be practical – insufficient "system" view
- No glory: hard to extract our value-add need good success metrics
- Case studies needed in teaching SI no less complex than business cases

Key Opportunities

- Move away from Black Magic to Standard SI design and test methodology: put aside the ego and show me the data
- Industry-wide Simulation methodology: Component suppliers to provide accurate models, working with tool providers
- Industry tool certification body (JEDEC) supplying benchmark test cases like TPC for database
- Specialized SI curriculum with lots of real-life case studies provided by industry

10/27/2001

Copyright – Sun Microsystems, EPEP, Derek Tsai

Conclusions

- Interconnect/Packaging is the bottleneck now and System is as good as the bottleneck: must solve it as a system to avoid large \$ and risk costs
- Some of Sun's challenges are shared by the industry:
 - Better metrics of success common language/goal
 - Joint solution can enlarge the pie for all and start with providing/sharing accurate models, and
 - Open interface to SI tools allows users to tackle next design challenges