

Coupled Interference in Mixed Signal Wireless ICs and Implications for Package Design

Robert C. Frye

Agere Systems 700 Mountain Avenue, Murray Hill, NJ

"Mainly digital" receivers

- Direct conversion or low-IF architecture eliminates analog IF stages.
- Digital implementation exploits Moore's Law.
- Mixed-signal IC design leads to crosstalk noise problems.

Switching transient coupling

Example package type comparisons

Switching transients

- Digital switching current transients appear stochastic in nature, but are correlated with the digital clock.
- This is a property of a cyclostationary process.

agere **Spectral properties of cyclostationary** waveforms

 Spectrum has both discrete and continuous components.

systems

- Continuous spectrum depends on cycle-tocycle correlation.
- Discrete spectrum, at multiples of clock frequency, depends on time-averaged waveform.

agere^{7,510113} Coupled digital noise in wireless systems

- The discrete spectral component of a cyclostationary noise source is particularly important because its power is concentrated at specific frequencies.
- For common digital clock frequencies, many spectral lines will fall inside a communication band, so interference is unavoidable.
- The severity of the interference depends not only on the degree of coupling, but also on the receiver's resolution bandwidth.

agere^{7/10/10} Discrete spectral noise and system bandwidth

- Discrete spectral noise is a delta function with infinite density at a single frequency.
- We can define an equivalent continuous spectrum of noise such that total noise power is the same.
- Discrete noise has greater impact on narrow band systems.

Example assumptions:

dc power : $I_{DC} = \langle I(t) \rangle = 20mA$ rise time : $t_{rise} = 1ns$ pulse width : $\delta t = \langle t \cdot I(t) \rangle / \langle I(t) \rangle = 5ns$

Noise coupling mechanisms

typical LNA input stage

Key noise coupling mechanism

Package assumptions

parameter	value	description
L_P	3 nH	Package pin inductance
L _{GD}	0.6 nH	Ground inductance (5 pins)
L _{GA}	0.6 nH	Ground inductance (5 pins)
C _{BG}	3.5 pF	Substrate to ground capacitance (conventional package)
L_{BG}	0.05 nH	Substrate to ground inductance (enhanced package)

Typical coupled noise power comparison

Noise reduction mechanism

Differential noise cancellation

- Coupled switching noise is not really noise, but crosstalk.
- It can be partially eliminated by the use of differential-mode circuit designs.
- The effectiveness of this is limited by component matching.

Differential LNA

Circuit and system design issues

- Coupled noise levels need to be substantially below sensitivity to meet SNR requirements.
- Enhanced packages with low substrate ground impedance reduce coupled noise by 20-25 dB.
- This greatly relaxes the component matching requirements for semiconductor technology.

Package design implications

- The main source of coupled noise at wireless frequencies is by leakage of digital switching current into the analog ground return path.
- The IC substrate is the common impedance path for this coupling.
- Low pin inductance (usually resulting from miniaturization) improves noise performance.
- Enhanced packages that provide low impedance substrate ground can substantially reduce noise compared with conventional leaded packages.