The Impact of Chip and Package Design on Radiated EMI

Todd Hubing University of Missouri-Rolla

Future Directions in IC and Package Design

October 19, 2002

Radiation from circuits

Common-Mode vs. Differential Mode

Radiation from circuits

What makes an efficient antenna?

What makes an efficient antenna?

EMI Problems Below 100 MHz

Wavelengths > 3 meters

Large Systems - It's probably the cables

Desktop Systems - It's definitely the cables

Handheld products - No problem (Unless you attach cables)

EMI Problems Above 1 GHz

At frequencies greater than a few hundred MHz, structures on a printed circuit board can resonate.

Example:

 $V_s = 1 volt @ 500 MHz$ $E_{rad} \approx 360 mV / m @ 3 meters$

More than 60 dB above the FCC Class B limit!

EMI Problems with Chips and Packages

Chips and packages are often the source of EMI problems, but they are rarely (if ever) the antenna.

Chips and packages become a problem when they are a source of common-mode current.

Sources of Common-Mode Current

Sources of Common-Mode Current

Sources of Common-Mode Current

EMI Problems with Chips and Packages

There are three ways that chips and packages tend to contribute to radiated EMI.

- Noise (or the wrong signal) coming from signal pins
- Field coupling to heatsinks or nearby components
- Power bus noise

Network Server

- Unacceptable emissions at 1.2 GHz
- 20th harmonic of 60 MHz clock
- Coupling from processor board to heatsink
- Not due to processors drawing 2 Amps
- Due to clock driver drawing a few milliamps

Automotive product

- Unacceptable emissions at harmonics of 16 MHz
- Internal processor frequency, no external signals
- Harmonic currents appeared on virtually every pin
- Low frequency traces were not routed adequately
- No good solution at the board level

LCD Display

- Unacceptable emissions at a few harmonics of 60 MHz
- Emissions occurred even when all signal pins were disconnected
- Power bus decoupling had no effect on noise
- Power bus isolation was effective, but not an option

Differential Clock Drivers

- Emissions at harmonics of clock frequency
- Rise and fall time differences create common-mode currents
- Imbalances in trace geometries and loads creates common-mode currents

Differential Clock Trace Scanning Test

FS6322-01 Features and Configuration

- Four differential current-mode Host clock pairs
- Four 66.67 MHz 3.3 V CK66 clock outputs
- Ten 33.3 MHz 3.3 V PCI clock outputs
- Two 3.3 memory Reference Clock
 outputs
- Two 48 MHz 3.3 CK48 clock outputs
- Two buffered copies of the crystal reference

F		
VSS_R 1	0	56 VDD_M
REF_0/ISEL_0 2		55 MREF_P
REF_1/ISEL_1 3		64 MREF_N
VDD_R 4		63 V88_M
XIN 5		52 88_EN#
XOUT 6		61 HOST_P1
V88_P 7		50 HOST_N1 2
PCI_0 8		49 VDD_H
PCI_1 9		48 HOST_P2
VDD_P 10		47 HOST_N2 🗟
PCI_2 11		46 VSS_H
PCI_3 12	т	45 HOST_PS 🕎
V88_P 13	Se	44 HOST_NS 👼
PCI_4_14	32	43 VDD_H
PCI_5 15	32	42 HOST_P4 2
VDD_P 16	6	41 HOST_N4 🚣
PCI_6 17		40 V88_H
PCI_7 18		39 IREF
V88_P 19		38 VDD
PCI_8 20		37 V88
PCI_9 21		36 VDD_66
VDD_P 22		35 CK66_0
SEL133/100# 23		34 CK66_1
V88_48_24		33 V88_68
X48_07 SEL_A 25		32 VSS_69
3K48_1 / SEL_B 26		31 CK66_2
VDD_48_27		30 CK66_3
PWR_DWN# 28		29 VDD_86

Measurement Equipment and Probe

Differential Clock Trace Scanning Test

Measurement Equipment and Probe

- An automated X-Y scanning system was used with an HP8563E spectrum analyzer to measure the H-field.
- This is the loop probe.

- Mounted on an Intel test board for measuring.
- The board is working normally (3.3 volts Vcc).
- The probe is placed about 1 mm above the device top surface.
- The chip is set to generate a 100-MHz differential clock output.
- Measurement frequency is 100 MHz and span frequency is 10 kHz.
- 9000 points (150 columns and 60 rows) are measured.
- The scanning area is slightly larger than the chip area.

Probe and Device Dimensions

Scan Result for Horizontal Loop

Scan Result for vertical loop

Magnitude of the Magnetic Field

Calculate the magnitude of the H-field over the chip by applying

$$H = \sqrt{H_x^2 + H_y^2}$$

The measuring frequency is 100 MHz.

The H-field Near the Pins

Pin 56 to Pin 29 (left to right)

Pin 1 to Pin 28 (left to right)

Magnitude of the Magnetic Field

The scanned H-field when Memory Reference clock outputs effect is eliminated (Pin 56 MREF V_{DD} is disconnected from the board).

Scan with Different Measurement Frequency

Scanned H-field at 50 MHz measurement frequency

Scan with Different Measurement Frequency

Scanned H-field at 200 MHz measurement frequency

Scan with Different Measurement Frequency

Scanned H-field at 500 MHz measuring frequency

Observations about this particular device

- Similar current patterns were observed on this clock driver when mounted to another board.
- Loading the differential or single-ended clock drivers does not appear to influence the predominant common-mode current.

Measurements of Another Clock Driver

A TV1-1-1 board with eight 74LCCX16244 (16-Bit buffer Driver).

74LCCX16244 Pin Description

Pin Descriptions

Pin Names	Description	
OE _n Io–I15 O ₀ –O ₁₅ NC	Output Enable Input (Active LOW) Inputs Outputs No Connect	
	5 7 6	
	3 4	
	1 0 2	

Measured 7 devices on the board

Measurement Result for 74LCCX16244

Scanned H-field over Device 0

Scanned H-field over Device 1 surface

Scanned H-field over Device 2 surface

Scanned H-field over Device 4 surface

Scanned H-field over Device 5 surface

Scanned H-field over Device 6 surface

Summary

There are three ways that chips and packages tend to contribute to radiated EMI.

- Noise (or the wrong signal) coming from signal pins
- Field coupling to heatsinks or nearby components
- Power bus noise

Summary

Features that distinguish "good" devices from "bad" devices:

- On-chip or on-package decoupling!
- Adequate number of gnd pins
- Package layout
- Chip design and layout

More work needed here!