

IBM Research, ZRL

Analog RF CMOS and Optical Design Techniques for 10+ Gbps Datacom

Trends, Challenges & Solutions

Martin L. Schmatz Oct 24th, 2004

I/O Link Technology | October 2004 |

© 2004 IBM Corporation

Agenda

- Introduction
- Electrical I/O
- Optical I/O
- Q&A

Moore's Law - Evolution

- Gordon Moore published observations
 - April <u>1965</u> Electronics: transistors per chip 2X every <u>12 months</u>.
 - Dec. 1975 IEDM: 2X every 12 months for 1975-79 and 2X every 24 months for 1980-85.
- David House while at Intel in <u>1980</u>'s: performance doubles every 18 months.
- Oct <u>1989</u> Pat Gelsinger: 2X every 24 months through 200<u>0.</u>
- Feb. <u>2003</u> ISSCC Gordon Moore keynote: 2X every 24 to 36 months.

Server Microprocessors - System-Level Integration

- Chip performance will improve by combining cores, memory controllers, very large L2/L3 caches, I/O hubs, and special purpose processors using high-performance on-chip busses.
- Increasing cache capacity will improve memory subsystem performance, reducing the required off-chip memory bandwidth and improving latency.

Electrical I/O

12.5 GByte/s RX I/O Macro: 10 Ianes @ 10 Gbps with scrambling and FEC

12.5 GByte/s RX I/O Macro C4 "4 on 8" Footprint

Game changers: I/O terminal to I/O device/macro wiring

C4 to I/O wiring:

- Up to 3 Gbps: Short on-chip data wiring is allowed but total I/O BW is limited due to slow speed of the lanes
- More BW is obtained by optimizing the speed (= data-rate) for each C4.
- BUT: The on-chip wiring distance between C4 terminal and I/O circuits has to be optimized for a jitter budget closure

Consequences:

- The I/O macro and the C4 I/O terminals have to be placed in close proximity
- If the I/O has to own the area around the C4 terminals, the optimum data-rate is such that the area is just filled

Game changers: I/O area & speed vs C4 pitch

"What if" question: Transition from "4 on 8" C4 pitch (200um) to "1 on 2" (50um)

<u>I/O area:</u>

- Up to 3 Gbps: Minimum area 'somewhere' on chip (see previous chart)
- Above 3 Gbps: I/O macro owns area beneath a C4 square

Consequences:

- C4 pitch and CMOS f_t number plus target link distance determine the optimum I/O data-rate.
- Narrow C4 pitch plus medium-speed link design enhance aggregate chip throughput

IEŅ

Area/performance example: CMOS SOI 90nm Phase Rotator Layout Comparison

Weight 18	<u>CML Type</u>
Mux 3-1	 Active area: 76 um X 61 um
	 Speed 13 GHz
Weight 1.8 Mux3:1 Clock Output Buffer	 Configuration: 6 phases input to 1 phase output 0.2 x area @ 0.6 x speed ⇒ 3x bandwidth per
	CMOS Type area improvement
Area for equivalent function Secon Secon Interpolat d stage stage er	^{etion} Active area: 80 μm X 30 μm
mux1 mux2	Speed 8 GHz
Preselecter1 Preselector2 Preselector3 Preselect	 Configuration: 16 phases to 1 phase output
	 6-to-1 configuration area: 30 µm x 30 µm

Area shrinkage demonstrator: Measured 10 Gbps operation

ibm

Optical I/O

Equalization

- 8-inch FR4 Board (measured Sparameters)
- HyperBGA Package (TX & RX)
- 700fF for ESD/C4 (TX & RX)

Remark: Only minor improvement in jitter for higher order FIR filters (for this channel)

© 2004 IBM Corporation

I/O link distance enhancement

- Short electrical CMOS link design for optimum power & area
- Optical extension for optimum <u>distance</u>

Our Technology-Approach

Electronics: Cable → Printed Circuit

<u>Optics</u>: Fiber → Integrated Waveguides

Waveguide Manufacturing

Propagation losses

Experimental results

- Consistent losses for WG width of 30, 50, and 70 μm
- Clearly increased losses in the 2nd and 3rd telecom window

Increased losses come from 2nd and 3rd overtones of hydrocarbon (C-H) bond vibrations (absorption peak @ 3.39 μm)

Possible solution: Fluorination, i.e. replacing C-H groups by C-F groups

0.04 dB/cm loss @ 850nm

Bending Losses

Mask layout

Measurement results

0.1 dB loss per 180°-bending of radius R = 20 mm

Crossing Losses

Mask layout

Micrograph of 30- μ m-crossing

Purpose

Waveguide channel routing

Measurement results

Loss per 90°-crossing: 0.02 dB (@ 850 nm) (Example: 100 crossings add up to only 2 dB)

Y-Splitters

Micrograph of 50-µm-splitters

Measurement scheme

Purpose

λ=640nm

Required for non point-to-point links

Experimental results

 0.10 dB excess loss for 50%:50% splitting (@ λ = 850 nm)

0.17 dB excess loss for use as combiner (@ λ = 850 nm)

Waveguide Density

("pseudo-standard")

At 10 Gbps channel modulation, this delivers an aggregate data density of <u>1 TByte/s per inch</u>

Experiments: 12.5 Gbps Signal over WG Spiral

> Open eye diagrams at 12.5 Gbps through 100 cm waveguide spiral

→ modal dispersion & loss not critical

IBM

Classification of coupling approaches

- Assumption: Electrical tracks and optical waveguides are both *parallel* to board surface. OE-components emit/accept light *perpendicular* to the chip surface.
- Consequence: A 90°-bend is required in this E-O path.
- Question: Is this task moved to the optical domain or to the electrical domain?

- more "electronics-friendly" (standard package and orientation), but more complex optical part (especially for 2D)
- separation of active OE-component and passive board (repairability); board (w/o OE) is sealed; interface to optics is on surface (servicability)

- more "optics-friendly" (effort in optical domain minimized), but more complex electrical part (flex)
- closer interlock between passive and active parts; board (w/o OE) has open slot; interface to optics is within board

• etc.

24

•etc.

For an honest and realistic evaluation, a system-level view is crucial.

At this point in time, both approaches have to be considered in more detail.

Waveguide based approach for I/O link extension

Approach

• Plug-in self-aligned coupler modules

package with digital chip

Plug-in card

• Collimated beam coupling concept

external I/O

coupi

Features

- Simple waveguide structures
- Potentially cheap and mass-producible

short on-board high-speed data link

Back-

plane

lectrical a

control / power / gnd

high-speed optical data link

I/O Link Technology: Recent progress

Optical wave-guides on electrical FR4 test board 4 x 12 channels = 600 Gb/s aggregate data-rate @ 12.5 Gb/s channels

IBM Research

Experiments: On-Board Link at 10 Gbps

T	100 100	
		1.1
_		

Video of Passive Positioning

- Live 10 Gbps link
 - Setup runs at 10 Gbps, using OE-module #4
- Passive placement of OEmodule
 - > OE-module #4 is removed
 - > OE-module #3 is inserted
 - As soon as #3 has electrical contact, the 10 Gbps eyes can be seen again
- Zoomed views of setup
 - Scope screen with two 10 Gbp eyes; time axis detail
 - Pattern generator speed
 - Zoom to IR-camera view, showing waveguide between packages, illuminated by some scattered light

Summary & Conclusions

- CMOS technology at 90 nm node (and follow-on nodes) has the inherent potential for >> 10 Gbps signaling rates.
 - Technology folks have done their job
- First level of packaging (chip I/O terminals) is the most limiting factor for leveraging of the CMOS technology potential.

Packaging folks are on: Denser C4 pitch would help

- Equalization concepts help increase signaling rates, but as speed goes up, complex equalization increases area significantly.
 Distance enhancements via optical extension is one potential solution
- Polymer waveguides have the potential to serve as the next generation wires.
 - → Physicists & chemicists have done their job
- Optical packaging and optical backplane connector are not finished yet
 Packaging folks are on: Cheap optical packages are required

Acknowledgements

- This presentation would not have been possible without the excellent inputs from...
 - various development groups in IBM's STG division
 - the IBM Research division, in particular the Zurich...
 - ✓ I/O Link Technology team
 - Photonics team
 - "Movie star" Chistoph Berger, ZRL who did most of the videos