Gigascale Integration Design Challenges & Opportunities

Shekhar Borkar Circuit Research, Intel Labs October 24, 2004

Outline

CMOS technology challenges
Technology, circuit and µArchitecture solutions
Integration opportunities
Summary

Goal: 1TIPS by 2010

How do you get there?

CMOS Technology Scaling

Dimensions scale down by 30%	Doubles transistor density
Oxide thickness scales down	Faster transistor, higher performance
Vdd & Vt scaling	Lower active power

Technology has scaled well, will it in the future?

Is Transistor a Good Switch?

Sub-threshold Leakage

Transistors will not be *switches*, but *climmers*...Dennis Buss, TI

Gate Oxide is Near Limit

Silicon substrate

High K & Metal Gate crucial for the industry

Leakage power limits Vt scaling

Sources of Variations

Impact of Variations

The Power Envelope...

Technology, Circuits, and Architecture to constrain the power

The Gigascale Dilemma

- Huge transistor integration capacity
- But unusable due to power
- Logic T growth will have to slow down
- Transistor performance will be limited
 Solutions
- Low power design techniques
- Improve design efficiency—Multi everywhere
- Valued performance by even higher integration (of potentially slower transistors)

New Transistors: Tri-Gate...

Improved short-channel effects Higher ON current for lower SD Leakage Manufacturing control: research underway

Active Power Reduction

Design & µArch Efficiency

Employ efficient design & µArchitectures

Memory Latency

Cache miss hurts performance Worse at higher frequency

Increase on-die Memory

Large on die memory provides:

- 1. Increased Data Bandwidth & Reduced Latency
- 2. Hence, higher performance for much lower power

Multi-threading

Multi-threading improves performance without impacting thermals & power delivery

Chip Multi-Processing

- Multi-core, each core Multi-threaded
- Shared cache and front side bus
- Each core has different Vdd & Freq
- Core hopping to spread hot spots
- Lower junction temperature

Special Purpose Hardware

TCP Offload Engine

2.23 mm X 3.54 mm, 260K transistors

Opportunities: Network processing engines MPEG Encode/Decode engines Speech engines

Special purpose HW—Best Mips/Watt

Valued Performance: SOC (System on a Chip)

- Special-purpose hardware → more MIPS/mm²
- SIMD integer and FP instructions in several ISAs

Roadmap to TIPS...

Multi-everywhere: MT, CMP

Summary

- Business as usual is not an option
 - –Performance at any cost is history
 - Move away from frequency alone to deliver performance
- Future μArchitectures and designs
 - -More memory (larger caches)
 - -Multi-threading
 - -Multi-processing
 - -Special purpose hardware
 - -Valued performance with higher integration