Greetings from Georgia Institute of Technology

Power Distribution Status and Challenges

Presented by Madhavan Swaminathan Packaging Research Center, School of Electrical and Computer Engineering

Acknowledgement

- Prof. Joungho Kim KAIST, S. Korea
- Dr. Istvan Novak SUN, USA
- Mr. James Libous IBM, USA

Outline

Introduction

- Digital Systems
 - On-Chip
 - Package and Board
 - New Technologies
- Modeling
 - On-Chip
 - Package and Board
- Mixed Signal Systems
 - RF and Digital Integration

Device Leakage Power Density Increasing

- In the past, CMOS **active power** was main concern with power delivery

- As CMOS scales to below 90nm, process related device leakage current contributes a significant **passive power component**

-Leakage current can be reduced by using **high-k dielectric** materials as replacement for silicon dioxide as the gate dielectric

-**Passive power** puts a further strain on the on-chip power distribution system as it erodes the dc IR drop noise budget and compounds the EM problem

Courtesy: J. Libous, IBM

Reproduced with permission

Importance of Power Distribution

FMAX (MHz)

Power Distribution in Heterogeneous Systems – A Major Challenge

of Technology

Power Distribution – DC to Daylight Problem

Chip – Package Co-design of Power Distribution is a necessity for Future Systems

Digital Systems

Power Supply Sensitivity

- Scaling reduces Vdd headroom (operating on a steeper part of the delay versus Vdd curve)
- -As Vdd values drop and power densities increase, IR drop becomes more of an issue

-Instantaneous voltage drop and spatial variation must be analyzed and controlled

-On-chip decoupling capacitors used as local power source to handle instantaneous current demands

-Dcaps must be placed where needed and requires a thorough understanding of chip current demand prior to chip physical design

Courtesy: J. Libous, IBM

Legacy I/O Voltages Must Be Distributed along with Core Voltages

Courtesy: J. Libous, IBM

GeorgiaInstitute of **Tech**nology

Voltage Islands and Power Domains

- Design approach to manage the active and passive power problem
- Voltage Islands Areas on chip supplied through separate, dedicated power feed

• **Power Domains** – Areas within an island fed by same Vdd source but independently controlled via intra-island header switches

- **Distribution Challenges** dcap isolation, transients due to activation & deactivation of islands, multiple supplies
- Simple Concepts..... Complex methodology and design tools

Courtesy: J. Libous, IBM

Target Impedance of Power Distribution Network

A concept becoming popular in the packaging community

Package on Board

Georgia Institute of **Tech**nology

Impedance seen by Chip on Package With Capacitors

GeorgiaInstitute of **Tech**nology

DC-DC Converters State of the Art

POL converter in PC

Courtesy: I. Novak. SUN

Georgialnstitute of Technology

12x10mm 15A POL converter. Source: www.power-one.com

SI parameters:

Z_{out}, Z_{in}, V_{out}/V_{in} Output ripple Loop stability Large-signal response

Potential Low-Frequency Problem: Peaky/Changing Output Impedance

Courtesy: I. Novak. SUN

Bypass Capacitors State of the Art, Bulk Capacitors

Face-down, low-inductance, low-ESR, low-profile, D-size polymer tantalum capacitor (curves A on the impedance plot)

"Overview of Some Options to Create Low-Q Controlled-ESR Bypass Capacitors," Proceedings of EPEP2004, October 25-27, 2004, Portland, OR

Courtesy: I. Novak. SUN

Bypass Capacitors State of the Art, Two-terminal Ceramic Capacitors

i **Tech**nologiy

1210 100uF

0508 4.7uF reverse geometry

Bypass Capacitors Multi-terminal Ceramic and Film Capacitors

New Technologies

Plane Resonance and Edge Radiation

Courtesy: J. Kim, KAIST

PCB Edge Radiation excited by 500 MHz Clock

Courtesy: J. Kim, KAIST

GeorgiaInstitute of **Tech**nology

Thin Film Embedded Capacitor

Vehicle Code	Dielectric Thickness	Dielectric Constant (DK)	Capacitance/cm ²	Total Capacitance (5cm x 5cm with 2 pairs)
Α	50 μm	4.6	81.46 pF	4.07 nF
В	25 μm	4.6	162.91 pF	8.15 nF
С	12 µm	4.6	339.40 pF	16.97 nF
D	10 µm	16	1416.64 pF	70.83 nF
E	10 µm	25	2213.50 pF	110.68 nF

Courtesy: J. Kim, KAIST

Measured PDN Impedance Curve

- Significant improvement over GHz with Thin Film Embedded Capacitor (Very low ESL of Embedded Capacitor)
- More improvement at low frequency range with high-DK embedded capacitor (More Capacitance)

Courtesy: J. Kim, KAIST

GeorgiaInstitute of **Tech**nology

Low ESL Embedded Decoupling Capacitors in the Package

Technical Innovation in Embedded Capacitors

Low temperature hydrothermal synthesis of BaTiO₃

- <100°C Process Temperature
- 100-500nm Thick Film
- Capacitance Density > 1µF/cm² Achieved
- Loss Tangent ~ 0.05

Sol-gel synthesis of BaTiO₃, SrTiO₃

- High Temperature Process (~600°C)
- Rapid Thermal Process Developed (3 min)
- 200-900nm Films Processed on Ni/Ti Foils
- Lamination Process for Integration
- Capacitance Density ~500nF/cm²
- Loss Tangent ~0.005

Modeling

On-chip Power Distribution Network

Cross section of ASIC power distribution*

3D view of on-chip power grid

Finite Difference Time Domain Method

First order Debye equivalent circuit

Cross section of on-chip power grid

Simulation of Power Supply Noise using FDTD

Chip composed of blocks with different power densities (unit=mw/mm²)

Georgialnstitute of Technology

Size(mm×mm)	6×6	
Metal Layers	6 (M1M6)	
Nodes	5,661,354	
Element (RLGC)	22,645,380	

Modeling of Core Power Distribution in Package and Board

Unit cell size: 0.093 X 0.093 cm

* Port 1: (0.677, 3.7268) Port 2: (1.058, 1.3138) Port 3: (3.471, 1.6948) Port 4: (3.09, 4.1078) cm

∇ Decaps

 \triangle Ferrite + C25

Original Plane

Courtesy: Kodak

Modeling of Multi-layered Planes in Packages and Boards using Transmission Matrix Method

Model to Hardware Correlation

Georgia Institute of **Tech**nology

Modeling of I/O Power Distribution

Coupled Signal and Power Distribution Simulation using TMM

Fig. 10: Transfer impedance spectra between the near-end of T-Line and the port P1.

Test Case: IBM HSTL_B 350MHz Driver

Example from SUN

[Top View]

[Cross Section]

Blue: Measurements, Red: Modeling

I/O switching noise is caused by the return current flowing on the I/O vdd/gnd planes.

Heterogeneous Systems

Heterogeneous Integration

Example: 802.11 a/b/g; WiMaX; UWB; Handset

Electromagnetic Coupling in Mixed-Signal Systems

GeorgiaInstitute of **Tech**nology

Isolation Methods Available

Split planes & Ferrite bead

- ferrite bead is placed between split planes for DC connection
- require a single power supply
- still poor isolation at high frequencies due to EM coupling through a gap

Power-plane Segmentation

- conducting neck is placed between split planes for DC connection
- requires a single power supply
- poor isolation except narrow frequency range

⇒ Better isolation technique is needed for mixed-signal system applications

GeorgiaInstitute of Technology

EBG Structure

- Two-dimensional (2-D) square lattice with each element consisting of a metal patch with two connecting metal branches.
- Metal branches introduce additional inductance and capacitance is mainly formed by metal patches and corresponding parts of other plane.
 - \Rightarrow **Distributed LC network**.

Schematic of Novel EBG Structure in GND plane

Noise Isolation using Electronic Bandgap Structures

Noise Reduction with EBG Structure

Summary

Digital Systems

Increasing chip power and technology scaling placing challenges on IR drop, EM, leakage and active power

Voltage islands on-chip and multiple I/O voltages making the design complex

Decoupling capacitors on package running out of steam

Embedding decoupling increasing design complexity

Modeling

On-chip Modeling: Still very complex due to the feature sizes,

irregular layouts and uncertainty in the return current path

Chip - Package Interface: Integrated modeling of chip and

package still doesn't exist

Estimation of current signature a big challenge

Modeling of isolation in mixed signal systems with low noise floors

Heterogeneous Integration

Achieving -85dBm over broad frequency a challenge

3D Integration is making it worse

Reference

M. Swaminathan, J. Kim, I. Novak and J. Libous, "Power Distribution Networks for System on a Package: Status And Challenges", IEEE Trans. On Advanced Packaging, pp. 286 – 300, Vol. 27, No. 2, May 2004