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Microprocessor Projections

8 GHz

425 W

70 GB/s

μP 140 mm2



Oct 24, 2004

Device Leakage Power Density IncreasingDevice Leakage Power Density Increasing

- In the past, CMOS active power was 
main concern with power delivery

- As CMOS scales to below 90nm, 
process related device leakage current 
contributes a significant passive 
power component

-Leakage current can be reduced by 
using high-k dielectric materials as 
replacement for silicon dioxide as the 
gate dielectric

-Passive power puts a further strain 
on the on-chip power distribution 
system as it erodes the dc IR drop 
noise budget and compounds the EM 
problem 

Courtesy: J. Libous, IBM
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Importance of Power DistributionImportance of Power Distribution

Reliability Wall
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Power Distribution in Heterogeneous Systems – A Major Challenge
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Power Distribution Power Distribution –– DC to Daylight ProblemDC to Daylight Problem

VRM Decoupling Capacitors Planes Orthogonal Wiring

Board and Package Power Distribution Chip Power 
Distribution

Low to Medium Frequency High Frequency
VRM Decoupling Capacitors Planes Orthogonal Wiring

Board and Package Power Distribution Chip Power 
Distribution

VRM Decoupling Capacitors Planes Orthogonal Wiring

Board and Package Power Distribution Chip Power 
Distribution

Low to Medium Frequency High Frequency

Package & Board Chip

Chip – Package Co-design of Power Distribution is a 
necessity for Future Systems
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Digital Systems



Oct 24, 2004

Power Supply SensitivityPower Supply Sensitivity

- Scaling reduces Vdd headroom      
(operating on a steeper part of the   
delay versus Vdd curve)

-As Vdd values drop and power 
densities increase, IR drop becomes 
more of an issue

-Instantaneous voltage drop and 
spatial variation must be analyzed 
and controlled

-On-chip decoupling capacitors used 
as local power source to handle 
instantaneous current demands 

-Dcaps must be placed where needed 
and requires a thorough 
understanding of chip current 
demand prior to chip physical design

Courtesy: J. Libous, IBM
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Legacy I/O Voltages Must Be Distributed Legacy I/O Voltages Must Be Distributed 
along with Core Voltagesalong with Core Voltages

Courtesy: J. Libous, IBM
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Voltage Islands and Power DomainsVoltage Islands and Power Domains
• Design approach to manage the
active and passive power problem

• Voltage Islands - Areas on chip        
supplied through separate, 
dedicated power feed

• Power Domains – Areas within 
an island fed by same Vdd source 
but independently controlled via 
intra-island header switches

• Distribution Challenges – dcap
isolation, transients due to 
activation & deactivation of 
islands, multiple supplies

• Simple Concepts….. Complex 
methodology and design tools Courtesy: J. Libous, IBM
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Target Impedance of Power Distribution NetworkTarget Impedance of Power Distribution Network
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A concept becoming popular in the packaging community

Courtesy: J. Kim, KAIST
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Impedance seen by Chip on Package With Capacitors

No onchip Cap

Onchip=150nF

Package and Board Decoupling Chip Decoupling

Chip – Package Resonance

Modeling Results
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DCDC--DC ConvertersDC Converters
State of the ArtState of the Art

SI parameters:
Zout, Zin, Vout/Vin

Output ripple

Loop stability

Large-signal response

12x10mm 15A POL converter.
Source: www.power-one.com

POL converter in PC
Courtesy: I. Novak. SUN
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Potential LowPotential Low--Frequency Problem:Frequency Problem:
Peaky/Changing Output ImpedancePeaky/Changing Output Impedance
Impedance magnitude [ohm]
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Courtesy: I. Novak. SUN
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Bypass CapacitorsBypass Capacitors
State of the Art, Bulk CapacitorsState of the Art, Bulk Capacitors

 Impedance magnitude, inductance [ohm, H]
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B
B

Face-down, low-inductance, low-ESR, low-profile, D-size 
polymer tantalum capacitor (curves A on the impedance plot)

“Overview of Some Options to Create Low-Q Controlled-ESR Bypass Capacitors,”
Proceedings of EPEP2004, October 25-27, 2004, Portland, OR 

Courtesy: I. Novak. SUN
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Bypass CapacitorsBypass Capacitors
State of the Art, TwoState of the Art, Two--terminal Ceramic  Capacitorsterminal Ceramic  Capacitors
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Courtesy: I. Novak. SUN
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Bypass CapacitorsBypass Capacitors
MultiMulti--terminal Ceramic  and Film Capacitorsterminal Ceramic  and Film Capacitors

 Impadance magnitude of 603-10mm film cap. [ohm]

1.E-3
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603-size capacitor

Via array
0.0047 ohm

603 pads, mid position
0.016 ohm

603 pads, end 
position

0.048 ohm

BGA capacitor

Film capacitor

Source: AVX Corporation: Low Inductance 
Capacitors, S-LICC5M396-C brochure

10-mm long film capacitor

60 mils

0603 pads

Multi-terminal capacitor

Courtesy: I. Novak. SUN
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New Technologies
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Plane Resonance and Edge RadiationPlane Resonance and Edge Radiation

I

I

Ground Plane

Power Plane

P/G Plane Edge RadiationI

Return Current

MS

-
V
+

Courtesy: J. Kim, KAIST
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Courtesy: J. Kim, KAIST
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Thin Film Embedded CapacitorThin Film Embedded Capacitor

A

B

C

D

E

Vehicle
Code Dielectric Thickness Dielectric Constant (DK)

50 μm

25 μm

12 μm

10 μm

10 μm

4.6

4.6

4.6

16

25

Capacitance/cm2

81.46 pF

162.91 pF

339.40 pF

1416.64 pF

2213.50 pF

Total Capacitance
(5cm x 5cm with 2 pairs)

4.07 nF

8.15 nF

16.97 nF

70.83 nF

110.68 nF

“A” with x50 “A” with x100

25μm50μm 12μm

“A” with x500 “B” with x500 “C” with x500

Courtesy: J. Kim, KAIST
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With Thin Film Embedded Capacitor
(Thickness : 12μm, DK : 4.6) – “C”

With Thin Film Embedded Capacitor
(Thickness : 10μm, DK : 25) – “E”

16 x 100nF Discrete Capacitors

Significant Improvement over GHz
With Thin Film Embedded Capacitor
Significant Improvement over GHz

With Thin Film Embedded Capacitor

Improvement at low frequency range
with High-DK Embedded Material

Improvement at low frequency range
with High-DK Embedded Material

Significant improvement over GHz with Thin Film Embedded Capacitor (Very low ESL of Embedded Capacitor)
More improvement at low frequency range with high-DK embedded capacitor (More Capacitance)

TM02/20 Mode
Resonance (5cm x 5cm)

TM02/20 Mode
Resonance (5cm x 5cm)

Measured PDN Impedance CurveMeasured PDN Impedance Curve

Courtesy: J. Kim, KAIST
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Low ESL Embedded Decoupling Capacitors in the Package

Low CTE, High Modulus 
Composite Substrate

Digital ICs (µP, Memory)

10 GHz Microprocessor (Bare die) 50um balls on
100um pitch
L=27pH per
Vdd – Gnd ball

Total Bump 
Inductance
6 fH

Negligible
Loop 
inductance
for charge 
transfer

Dielectric
thickness of
0.1um leads to 
pH spreading 
inductance

Embedded 
decoupling
1 – 3μF/cm2

charge reservoir

Zero signal
delay
penalty
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Technical Innovation in Embedded Capacitors

High frequency measurement

Low temperature hydrothermal 
synthesis of BaTiO3

• <100°C Process Temperature
• 100-500nm Thick Film
• Capacitance Density > 1µF/cm2 Achieved
• Loss Tangent ~ 0.05

Sol-gel synthesis of BaTiO3 , SrTiO3
• High Temperature Process (~600°C)
• Rapid Thermal Process Developed (3 min)
• 200-900nm Films Processed on Ni/Ti Foils
• Lamination Process for Integration
• Capacitance Density ~500nF/cm2

• Loss Tangent ~0.005
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Modeling
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On-chip Power Distribution Network

Cross section of ASIC 
power distribution*

3D view of on-chip power grid
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Finite Difference Time Domain Method

First order Debye equivalent circuit
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Simulation of Power Supply Noise using FDTD

Chip composed of blocks with different 
power densities (unit=mw/mm2)

22,645,380Element (RLGC)
5,661,354Nodes
6   (M1…M6)Metal Layers
6×6Size(mm×mm)
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Modeling of Core Power Distribution in Package and Board

Original Plane Grid 

* Port 1:   ( 0.677,    3.7268)
Port 2:   ( 1.058,    1.3138)
Port 3:   ( 3.471,    1.6948)
Port 4:   ( 3.09,      4.1078)  cmUnit cell size:  0.093 X 0.093 cm

∇ Decaps
Δ Ferrite + C25 

Courtesy: Kodak
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Modeling of Multi-layered Planes
in Packages and Boards using Transmission Matrix Method

Horizontal plane pair approximated using
discretized RLGC parameters

Planes connected using via inductance
Matrix Reduction



Oct 24, 2004

Bare Board for 1V8 Plane

Z11 Blue: Measurement
Red: T Matrix

Model to Hardware Correlation
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Modeling of I/O Power DistributionModeling of I/O Power Distribution

Differential Transmission Lines (50 Ω)

0.3 V (Vterm)

50 Ω

50 Ω

2. RLGC Models or Macro-models 
of Transmission Lines

PDN Macro-model

Port 1 Gnd

Port 2

Gnd

Port 3

Gnd

0.6 V 
(Vdd)

1. Macro-models of
PDN

50 Ω
Differential

Driver

3. Non-linear
Macro-models
Of drivers
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Coupled Signal and Power Distribution Simulation using TMM
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Gnd
Core Vdd

Gnd
I/O Vdd

Gnd
I/O Vdd

Gnd
I/O Vdd

Gnd

Interconnects

Interconnects

Interconnects

Interconnects

178 I/O Decoupling Capacitor

195 Core Decoupling Capacitor

750 MHz
Microprocessor

SRAM

Connector

274 Interconnects

128 Interconnects

x

y

Example from SUN
[Top View] [Cross Section]
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I/O switching noise is caused by the return current
flowing on the I/O vdd/gnd planes.

[Frequency Domain] [Time Domain]

Blue: Measurements, Red: Modeling
Simulation Time: 124 Seconds with 20 ps time step
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Heterogeneous Systems
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Heterogeneous Integration

Multiband 
antenna

Multiband filter Multiband 
Balun

Multiband 
Differential 

Downconverter

ADC 
+ 

Processor

f1 f2

Digital-Analog Coupling

Multiple Signal 
Generator

Multiband 
Low Noise 
Amplifier

CHIP DOMAINPACKAGE DOMAIN

Example: 802.11 a/b/g; WiMaX; UWB; Handset



Oct 24, 2004

GND 
layer

VDD 
layer

RF 
circuit

Digital circuit

Load

Dielectric layer (εr = 4.4)

Current EM wave

EM coupling

Electromagnetic Coupling in Mixed-Signal Systems
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Split planes & Ferrite bead
- ferrite bead is placed between split planes for DC connection 

- require a single power supply

- still poor isolation at high frequencies due to EM coupling through 
a gap

Power-plane Segmentation
- conducting neck is placed  

between split planes for DC
connection

- requires a single power supply
- poor isolation except narrow 
frequency range

⇒ Better isolation technique is needed for mixed-signal 
system applications

Isolation Methods Available
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EBG Structure

Two-dimensional (2-D) square lattice with each element consisting of

a metal patch with two connecting metal branches.

Metal branches introduce additional inductance and capacitance is 

mainly formed by metal patches and corresponding parts of other plane. 

⇒ Distributed LC network.

Schematic of Novel EBG Structure in 
GND plane

Unit Cell of Novel EBG 
Structure
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300MHz FPGA with 2.13GHz LNA

Substrate Coupling

Noise Isolation using Electronic Bandgap Structures

Patterned Ground Plane

EBG 
Response
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Digital Systems
Increasing chip power and technology scaling placing challenges on IR drop, EM, 
leakage and active power

Voltage islands on-chip and multiple I/O voltages making the design complex

Decoupling capacitors on package running out of steam

Embedding decoupling increasing design complexity

Modeling
On-chip Modeling: Still very complex due to the feature sizes,

irregular layouts and uncertainty in the return current path

Chip – Package Interface: Integrated modeling of chip and 

package still doesn’t exist

Estimation of current signature a big challenge

Modeling of isolation in mixed signal systems with low noise floors

Heterogeneous Integration
Achieving -85dBm over broad frequency a challenge

3D Integration is making it worse

Summary
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