Solving the challenges posed by Chip/Package/Board Co-Design

Identify and locate sources of unwanted coupling

Simulation *link to EM*:

Critical Interconnect, Vias, Discontinuities, Embedded Passives, etc

Solving the challenges posed by Chip/Package/Board Co-Design

- 1. Electromagnetic effects must be captured as passive and causal Spice circuit models
- 2. Adding IC, Package, and PCB physical layout effects create increasingly larger and more complex circuits

Model Order Reduction (MOR)

- > A linear system can be described by a transfer function $y(t) = \int_{-\infty}^{\infty} r(\tau) h(t - \tau) dt$
 - Time Domain

$$y(t) = \int_0^\infty x(\tau)h(t-\tau)dt$$

or

> Frequency Domain Y(s) = X(s)H(s)which are related to each other through the Laplace Transform

$$Y(s) = \int_0^\infty y(t) e^{-st} dt$$

Transfer Function

The transfer function H(s) can be represented by a rational function

$$H(s) = \frac{b_{q-1}(s - z_{q-1})(s - z_{q-2})...(s - z_1)}{a_q(s - p_q)(s - p_{q-1})...(s - p_1)}$$

where (z_i, p_i) are the zeros and the poles of the system

J. E. Bracken, D. K. Sun and Z. J. Cendes, "S-domain methods for simultaneous time and frequency characterization of electromagnetic devices", *IEEE Transactions on Microwave Theory and Techniques*, Vol. 46, No. 9, pp. 1277-1290, September 1998

S-Parameters from FWS

Passivity

- > A circuit is called passive if it cannot generate energy
- Conditions for a passive 1-port:

>
$$\operatorname{Re}(Z_{11}) \ge 0$$
 , or

- $\succ |S_{11}| \leq 1$
- (for all frequencies from DC to infinity)
- It's a bit more complex for an N-port:

$$\max(\operatorname{SVD}(\mathbf{S}(f))) \le 1 \quad \text{for} \quad 0 \le f \le \infty$$

SVD = singular value decomposition

Passivity Enforcement

Given: a rational function model that may not be passive

$$S_{11}(j\omega) \approx \sum_{n} \frac{k_n}{j\omega - p_n}$$
 Optimize these

Keep the poles fixed and optimize the residues so the passivity constraint is met

Causality FR4, 10 cm line, far end

Zoomed-In View

S-Parameters and W-Elements

- Import any s-parameter file
- Superior s-parameter handling
 - State-space models
 - Verification & enforcement of Causality & Passivity (user choice)
- Parameterizable through NMF

Prope	roperties: PCIE Breakout Circuitry - Nexx 🕨									
Paramete	Parameter Values General Symbol Property Displays									
ΘV	alue C Op	timization C	Tuning	0	Sensitivity					
	Name	Value	Unit	Evaluate						
	CoSimulator	Circuit								
	CosimDefinition	Circuit	Ĭ							
	Status	Bypass								
	Info	TICKIIII LOSS OT GIGI	4							
•					►					
	🗖 Show Hidden									
			(эк	Cancel					

What does this mean for circuit simulation?

Example: Power Integrity

Transient Analysis using Nexxim

18 IBIS Drivers57 Port S-parameter model

Transient simulation time: 366s

Chip and Package Design

64-bit Nexxim

Other simulators cannot solve this problem!

Nexxim solution time: 36 hrs

PCI Express

Originally developed by PCISIG

- > Intel[®] was a major contributor
- > 1st specification released at Q2, 2002
- Movement towards communication industry technology
- Why serial and not parallel bus ?
 - Parallel I/O interconnects limited
 - Serial bus architecture
 - More bandwidth per pin
 - Scales easier to higher bandwidth
 - Enables network point to point links
 - Instead of multi-drops

Flexible, scalable, high-speed serial point to point hot pluggable & swappable interconnect

Courtesy of Intel Corporation

PCI Express Electrical Specifications

- Each PCI Express lane has two CML Tx/Rx pairs
 - > 2.5 Gb/s per lane
 - Current Mode Logic
- Each data lane uses 8B/10B encoding
- > 8 bit byte is translated to 10 bit character
 - Equalizes numbers of 1's and 0's
- Selectable multiple line widths
 - 1, 2, 4, 8, 16 or 32 lanes
 - Accommodates higher bandwidths

Specification is focused on "card" type connections, as opposed to cable connections

Existing Intel "DOE" Design Flow

Integrated Planar EM

Fully integrated

- Any geometry
- > Variable stackups, dielectric constants

Planar EM Simulations

- Simulate within circuit or separate
 - Same project
- Fields & currents
 - Observe crosstalk & ground current
- Fully integrated
 - No re-solving on changing parameters
 - Auto-interpolation

Integrated HFSS Simulations

- Fully integratedAny geometry
- Fully parameterizable

• \	/alue C O;	otimization C	Tuning	C	Sensiti
Γ	Name	Value	Unit	Evaluate	
	ModelName	FieldSolver			
	Data	HfssData			
	CosimDefinition	Edit			
	CoSimulator	Bypass			
	Status	Circuit			
┛		Bypass			►
			 □ Sho	w Hidden	

HFSS Full 3D Simulations

- Cosimulation separate or within circuit
 - View fields or surface currents
- Dynamically linked
 - No re-solving on changing parameters
 - Auto-interpolation

Block Diagram of Gigabit Serial Channel

Intel's New Design Flow

Design Flow DOE Example

PERFORMANC

- Choose project, Design, etc.
- Press "Start DOE"
- Designer Automatically Runs
- Saves each iteration in a Data file
 - Post process in Designer or aftermarket tool

HIGH

눧 Data								
<u>Eile E</u> dit <u>V</u> iew F <u>a</u> vor	ites <u>T</u> ools	<u>H</u> elp	A					
Ġ Back 🔻 🕥 👻 🏂	🔎 Search	💫 Folders						
Address 🖻 C:\Designer\Rebuild Of General Project 💌 🖻 Go								
Name 🔺	Size	Туре	Date M					
OutputFile0.tab	49 KB	TAB File	8/15/20					
OutputFile1.tab	49 KB	TAB File	8/15/20					
OutputFile2.tab	49 KB	TAB File	8/15/20					
OutputFile3.tab	49 KB	TAB File	8/15/20					
OutputFile4.tab	49 KB	TAB File	8/15/20					
OutputFile5.tab	52 KB	TAB File	8/15/20					
OutputFile6.tab	49 KB	TAB File	8/15/20					
OutputFile7.tab	49 KB	TAB File	8/15/20					
OutputFile8.tab	49 KB	TAB File	8/15/20					
OutputFile9.tab	49 KB	TAB File	8/15/20					
OutputFile10.tab	49 KB	TAB File	8/15/20					
Ille11.tab	52 KB	TAB File	8/15/20					
•								
E EDA			ANSOF					

Allows Rapid "What if" Analyses

Allows Rapid "What if" Analyses

The connector has the largest effect on closing the eye

Package/Package Merge Utility

Package on Package/View

