cādence

Modeling and Analysis Challenges for Complex Digital Systems-in-Package Designs

Zhen Mu Cadence Design Systems, Inc.

1 CADENCE DESIGN SYSTEMS, INC.

FDIP Workshop, EPEP 2006

Note

• The content of this presentation is the collected effort of the entire SiP team in SPB division at Cadence.

Topics

- SiP Overview
 - What is SiP?
 - Why is SiP Important?
 - SiP applications
- SiP Design Challenges
- Requirements of EDA tools for SiP design and analysis
 - Co-Design methodologies
 - Design management
 - SI and PI analysis

• Summary

Topics

SiP Overview

- What is SiP?
- Why is SiP Important?
- SiP applications
- SiP Design Challenges
- Requirements of EDA tools for SiP design and analysis
 - Co-Design methodologies
 - Design management
 - SI and PI analysis

• Summary

What is SiP?

cādence

- SiP (System-in-Package)
 - Single package that combines all of the electronic components (digital ICs, analog ICs, RF ICs, passive components or other elements) needed to provide a system or sub-system.
- Applications
 - Cellular
 - Bluetooth
 - 802.11 WLAN
 - CMOS Sensors

Why is SiP important?

cādence

- Increased functional density
 - Miniaturization due to fewer packages and 3D stacked die
 - Multiple technologies in a SiP
- Reduced time-to-new product concepts
 - Faster design cycles (over SoC)
 - Reduce system board complexity and layer count
- Performance through interconnect elimination
 - Low power
 - High speed
- Optimization of complexity, cost, and time to market

Courtesy of ASAT

SiP applications in wireless devices

WLAN Camera GPS Games Video SANYO Music Personal **Productivity** Voice

SiP Functions

RF/IF (WLAN, Bluetooth, GPS)

> Camera (A-FEP,DSP,VDr)

Baseband (DSP,memory)

Application (GPU,CPU,memory)

Multi-Die package

Courtesy of ASAT

SiP and Stacked-package designs increase 21% yearly Designs move from experts to majority of designers

(Source: Electronic Trend Publications)

Topics

- SiP Overview
 - What is SiP?
 - Why is SiP Important?
 - SiP applications
- SiP Design Challenges
- Requirements of EDA tools for SiP design and analysis
 - Co-Design methodologies
 - Design management
 - SI and PI analysis

• Summary

Multiple die connections

Die stacking

Package-on-package

Complex die stack design

Complex die stack design

cādence

• Interposer

Topics

- SiP Overview
 - What is SiP?
 - Why is SiP Important?
 - SiP applications
- SiP Design Challenges
- Requirements of EDA tools for SiP design and analysis
 - Co-Design environment
 - Design management
 - SI and PI analysis

• Summary

Modeling and analysis challenges

- Optimization requires design automation
- Recongnicing the differences between SiP design and classic single package and PCB designs
- Issues
 - Multiple stacked dies are placed vertically or horizontally
 - Connection between multiple dies are realized by wirebonding, interposer, interconnect, or flip-chip technology
 - IC design needs to consider package design, while package design needs to consider IC requirements
 - How to make die information available to package designers, and how to pass package models back to IO designers to simulate entire signal path
 - Data passing and property mapping

Modeling and analysis challenges

- Fundamental requirements for SiP tools
 - An environment with IC/package/board co-design and co-simulation capabilities
 - To provide engineers with Signal Integrity (SI) and Power Integrity (PI) solutions
 - Concurrent pre-route analysis and post-route verification

Current methodologies must change

- Isolated IC, Package, and PCB design tools increases costs and design cycle times
 - Many problems not discovered until integration (costly iterations)
- New methodology requires full system interconnect planning
 - IC package interconnect and its influence must be fully understood and modeled
 - Must arbitrate connection scheme across chip, package and board
- Timing, signal integrity and power delivery intertwined
 - Full analysis of system interconnect from buffer to buffer required
- Constraints have to be established based on accurate pre-route analysis

Topics

- SiP Overview
 - What is SiP?
 - Why is SiP Important?
 - SiP applications
- SiP Design Challenges
- Requirements of EDA tools for SiP design and analysis
 - Co-Design methodologies
 - Design management
 - SI and PI analysis

• Summary

SiP digital design flow

- Concurrent designs & independent teams
- Unique IC processes
- Design chain geographically diverse

Sub-assembly is the SiP

Resulting SiP

Complex 3D Structures & Technologies

- U1: flip chip, 90nm digital
- 3DIC:
 - U2: wire bond 130nm
 - M1 & M2: wire bond 90nm memory
- U3: fixed die, flip chip 130nm digital

SiP digital design methodology

cādence

Digital SiP connectivity hierarchy

Co-design dies

- IC tool based die abstract editor
- Co-design die are hierarchical design elements on substrate
- Die abstracts management
- Data Import/Export

Concurrent design to enable optimization cadence of DIE abstracts

Route feasibility analysis: IC-RDL and SiP substrate

- Flip Chip or Wirebond Attachment
 - Automatic optimization strategies via node swapping
- Based on Package Pin Assignment
- Flip Chip Escape Patterns
- Feasibility Routing for RDL
 - IOP mask ready RDL routing
 - I/O Buffer to Bump/Die Pad in IOP
- IC-Pkg routability analysis
 - All angle, Orthogonal, Diagonal
 - Support for Differential Signaling
 - Materials and Standard Package trade-offs
 - Full mask ready substrate routing

cādence

Package Physical Layout

- Automatic Bond Shell Creation
- Net assignment based on Routability of Package
- All angle auto-routing
- Unique routers for wire-bond and flipchip routing styles
 - DRC correct
 - Electrical constraints and Physical rules

3D Visualization

- Support for Die Stacks
- Bond Wire Clearance Checking
 - Reverse Bonding
- Micro-Via Checking

Topics

- SiP Overview
 - What is SiP?
 - Why is SiP Important?
 - SiP applications
- SiP Design Challenges
- Requirements of EDA tools for SiP design and analysis
 - Co-Design methodologies
 - Design management
 - SI and PI analysis
- Summary

Co-design methodologies in high-speed [cadence] design

- Problem1: Signal path from silicon to board through package
 - Reflections, xtalk, timing

Co-design methodologies in high-speed [cadence] design (cont')

 Problem 2: Power delivery path from board to silicon through package

Co-design methodologies in high-speed cadence design (cont')

• Problem 3: Effects between signal and power supply

Signal analysis: Establishing constraints cadence

 Early exploration on multi-die connection

Signal analysis: Establishing constraints cadence

 Early exploration on multi-die connection

Signal analysis: Establishing constraints cadence

Signal analysis: interconnect modeling [cadence]

 Detailed interconnect modeling

Signal analysis: assistant to analysis

Camera 😅 🖬 🖚 🎘 🎒 💋 🧶 📃 🖄 🗇 🗶 🗇 🗍 🖉 🖉 🖄 NE MH SH SE 👔 🖽 🖉 📐 🔍 📷

36 FDIP Workshop, EPEP 2006

• 3D view

Signal analysis: wirebond constraints

- Perform what/if analysis by changing wirebond profiles
 - Work with existing design and/or start new design
 - Edit the parameters
 - Update (or extract) constraints

Signal analysis: stackup design

• Crossection details

🕺 Layout Cross Section														
Cross Section														
		Subclass Name	Туре		Material		Thickness (UM)	Conductivity (mho/cm)	Dielectric Constant	Loss Tangent	Negative Artwork	Shield	Width (UM)	Impedance (ohm)
	1		SURFACE		AIR									▲
	2	WBOND_TOP_STK	BONDING_WIRE	-										
	3	SPACER1	DIELECTRIC	-										
	4	WBOND_BOT_STK	BONDING_WIRE	-										
L	5	SPACER2	DIELECTRIC	•										
	6	TOP_COND	CONDUCTOR	-	COPPER	-	30.48	595900	1.000000	0			50.00	
L	7		DIELECTRIC	•	FR-4	•	60	0	4.500000	0.035				
	8	METAL2	CONDUCTOR	-	COPPER	-	30.48	595900	1.000000	0.021			50.00	
L	9		DIELECTRIC	•	FR-4	•	125	0	4.500000	0.035				
	10	VSS	PLANE	-	COPPER	-	30.48	595900	1.000000	0.021		×		
L	11		DIELECTRIC	•	FR-4	•	200	0	4.500000	0.035				
	12	VDD	PLANE	-	COPPER	-	30.48	595900	1.000000	0.021		×		
L	13		DIELECTRIC	•	FR-4	•	125	0	4.500000	0.035				
	14	METAL3	CONDUCTOR	-	COPPER	-	30.48	595900	1.000000	0.021			75.00	
L	15		DIELECTRIC	•	FR-4	•	60	0	4.500000	0.035				
	16	BOT_COND	CONDUCTOR	-	COPPER	-	30.48	595900	1.000000	0			75.00	
	17		SURFACE		AIR									

Signal analysis: wirebond modeling

Signal analysis: wirebond model re-use [cadence]

Signal analysis: wirebond model re-use

The corresponding design with only wirebonds

Signal analysis: wirebond model re-use cadence

 3D view of the multi-die design

Signal analysis: wirebond model reuse

- View geometry mesh
 - Original net (in full)

Signal analysis: reflections, crosstalks, cadence

- Building simulation circuits
 - 3D modeling

Signal analysis: reflections, crosstalks, cadence

Power analysis: power delivery

• Power delivery to multiple dies

Power analysis: power delivery

- File View Help 🗃 🖬 🐰 🖻 📾 🥵 😵 Ready
- Power delivery to multiple dies

Power analysis: power delivery

- Power delivery to multiple dies
 - Decoupling capacitor selection and placement

Power analysis: IR-Drop analysis at IC level with package effects included (cont')

Voltagestorm output using multi-port DC net model of package

Worst IR-drop : 155mV

Worst IR-drop : 253mV

Power analysis: stability study

- Estimate SSO/SSN impacts at early design stage
 - This methodology helps decide the ratio of signal I/O pads to power & ground pads before starting chip design

- Final verification for solutions 1-3
 - Consider entire signal path
 - Silicon to board through package
 - Examine signal quality and timing budget
 - Consider power stability
 - Key is SSN analysis

- Design example: finished package design
 - Many diff. pairs
 - Multi-GHz
 signaling

- Design example
 - Finished package design
 - Wideband
 model
 extraction

File Edit View Add Display Setup Shape Logic	Place Route Analyze Tools Help	
		Contions Find Visibility
	🚧 3-D Interconnect Modeling	Topacio (Trice () recent
		Views:
	Package Model Net Model	Laver Conductor Pin Via Drc All
3-D Modeling Parameters	Select method to create Net Model:	
General Bond Wire Ball Bump External Ground SI Ignore Layers	Single or coupled net model for selected net(s)	
	Coupled net model for selected nets and neighbor nets	
	C One model for each net coupled with neighbor nets	
Solder Ball Location @ Auto-detect C Bottom C Top	Net List of Nets Net Browser	
	Selected Nets	
Design unit microns		
Frequency 5000MHz	LNTI_PAD_IX_N LNTI_PAD_IX_P	L03 🔲 🔲 🗖 🗖
Number of coupling nets 1		Vp3 ■■■□
Minimum via diameter 50um		
Ignore void diameter Dum		
Mesh	wer can also be selected by mouse pick of by window in canvas.	
HL mesh density		Vp5 🔳 🔳 🗖 🗖
CG danas haundaru hau		
CC a directional boundary box	Net Model Type DML Wideband	
- O-Yan		
Enable Multiport		
Controlled sources in model YES	Create Hackage Terminal Map File	
Number of subcircuit seaments 5	Load into the existing device library	
	Close Create Model Parameters Port Group Help	
- Frequency Sweep		
Start frequency 0MHz		
Number of frequency points 1024		
Frequency sweep scale Linear		
Reference impedance 50ohm		
OK Cancel Help		
		8
last nick: -6399.32 -5151.18		Crart signal 2dmodel
Enter selection point		PLA 2892 93 2797 78
Enter selection point		
Lommand >		▼

- Design example
 - Mesh view of a pair of critical differential signals

- Design example
 - Driver/receiver model
 - Transistor
 level model
 wrapped in
 Spectre
 format
 - Macromodel
 - Long trace representing board
 - Run Spectre directly in SiP environment

 Large package model

 Assign package model and power/ground buses

🏪 Sig	gXpl 🛛	VIBIS Device I	Model Editor				_		_ & ×
File	View	Edit Pins Assign	Power/Ground Pins	assiqn Siqnal Pins	s				
		Model Info			Estimated Pin Parasi	tics in typ	nax	51 11 - 4223 avr	0)ki uspas • Rister, I-
		Model Name :	vader_ni_pg		Resistance :				
		Manufacturer : Package Model :	Cadence		Capacitance : Inductance :			3111 42 FT	
		-IBIS Pin Data Pin Signal	IOCell		Resistance Capacitanc	e Inductance Diff Ma	Pair Wire		MOL (10 PT)
		11 VDD12 12 VSS 13 LN11_TXP 14 LN11_TXN 15 16 17 LN10_TXP 18 LN10_TXN	CDSDefaultFrob CDSDefaultFrob Rockfish_Tx Rockfish_Tx NC NC Rockfish_Tx Rockfish_Tx	e e		-	1 2 14 13 4 5 6 18 7 7 7 2 8		NCARLA
	/ Mo	10 1410_14A 19 110 111 LN9_TXP 112 LN9_TXN 113 114 115 LN8_TXP 116 LN8_TXN 117	NC NC Rockfish_Tx Rockfish_Tx NC Rockfish_Tx Rockfish_Tx Rockfish_Tx			-	17 9 10 112 11 111 12 13 14 116 15 115 16	₩ 5 M 5 ₩ 50 M 6 ₩ 50 M 6 ₩ 50 M 10 ₩ 50 M 10	Markente Mar
M M	ihow M Iodel Iodel .	1		Add Pin Data	Measure Delays ->	Set VireNumb	bers ->		
	1 pl	OK Cance	el DML Check				Help	51.7 19.477 see	0000,00 (0) P6 12 000 free (0) (6 / 12 000) free (0) (6 / 12 000 free (0) free (0) (6 / 12 000 free (0) free (0
	2 vad 3 vad	ler_ni_pg ler_ni_pg_orig	IbisDevice IbisDevice				Pas		Richell
				- 1			T PA Pas) 1000 UU KU 1010 UU KU 1010 UU KU	518 H 478 10 H
							Pay	1997.11	
	ibrary.	: cds_models	.ndx						
	Add Mo Edi	del -> Delete it TextEdi	t View						
	Cla			Help	•				▼
Ready	010			norp					Stop

- Results of detailed Spectre simulation
 - 8 Lane SSO analysis results

Summary

- System-in-Package is the right integration solution for wireless and consumer products
 - It posts great challenges to designs and analyses (differences between single package and PCB designs)
- Design tools are evolving to meet the needs of designers
 - IC-Package-Board co-design and co-simulation enable designs to be optimized to meet design requirements
- SiP Digital tool
 - Providing a co-design environment for SiP interconnect including embedded ICs and the target printed circuit board
 - Including integrated signal integrity, parasitic extraction/modeling and substrate interconnect editing, power delivery, and signal/power interference analyses

Thank you