

Power Delivery System Design Challenges and Explorations on How to Overcome Them

Jiayuan Fang Sigrity, Inc. October 28, 2007

Overview

- The importance of power integrity has been recognized for well over a decade
- Power delivery system (PDS) has been a hot topic ever since the first EPEP in 1992
- A number of commercial tools for PDS analysis and simulation have been developed and brought to market since late 1990s by several software vendors
- More than 100 companies worldwide have acquired commercial software tools for PDS design and analysis

Questions:

- What are the main remaining design challenges for PDN?
- Are software tools adequate to help engineers overcome such challenges?

Observation

- A very small number of companies are able to put a large amount of dedicated resources to do extensive pre- and postlayout design and analysis using software tools for power delivery systems
- Many companies use software tools to do power analysis only when they encounter problems or suspect to have problems related to PDS
- Most of the companies use *trial-and-error* instead of software tools in placing decoupling capacitors on the board. Such practice often leads to many iterations or grossly over designs.

What Seems Lacking in PDS Designs

- Design specifications
 - Quite often there is no PDS design specifications, or
 - The design specifications are not specific enough

Effective design flow to meet design specifications
 No streamlined procedure to implement, optimize,

and sign-off PDS designs

What Are the Proper Design Specifications for PDS

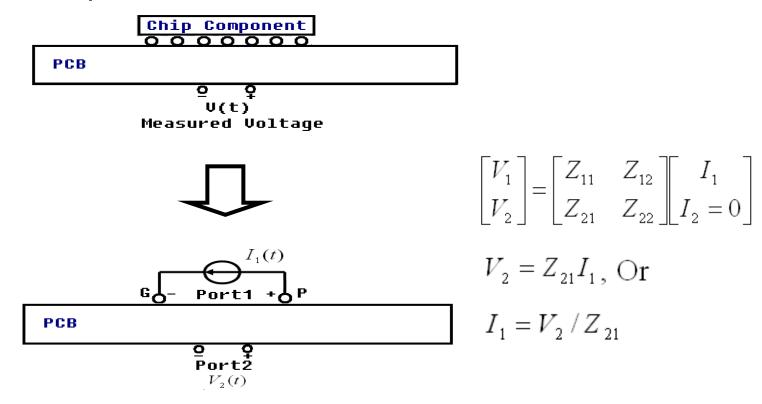
- Voltage noise magnitude in terms of mV?
 - Under what stimulus or stimuli?
 Can chip vendors provide them?
 Can system people measure and extract them?
- Power-ground impedance Z(f) over a certain range of frequency?
 - How to determine them?
 - Who provide them? By chip vendors?
 - How can system people measure and extract them?

What Are the Proper Design Specifications for PDS (Cont.)

- Power-ground loop inductance L (particularly for packages)?
 - How to determine them?
 - Who determine them? By chip vendors?
 - Can package designer extract them?
- In terms of signal quality?
 - Jitter?
 - Eye-diagram characteristics?

Who and How to Determine PDS Design Specifications

By chip vendors with EDA tools


- Chip vendors use EDA tools to generate chip power models with time-domain stimuli as well as the requirement of maximum magnitude of power net voltage noise
- Chip vendors use EDA tools to obtain the PDS impedance profiles Z(f) of packages and reference boards, and provide the PDS impedance profiles as design specifications for board and package designers.

Who and How to Determine PDS Design Specifications (Cont.)

Extract chip current by measurement

• Measure the voltage noise waveform and extract chip current waveform

<u>SIGRITY</u>

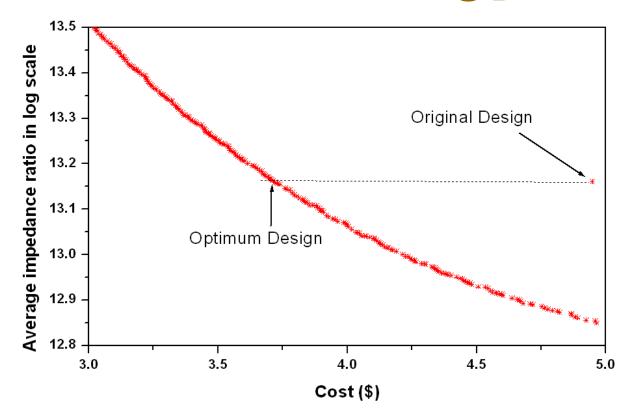
Who and How to Determine PDS Design Specifications (Cont.)

- Build PDS characteristics and performance database library by board and package vendors
 - The database includes the PDS performances of the components successfully used in previous applications
 - Computed PDS impedance profiles (or effective powerground loop inductances)
 - Any lab assessment on actual PDS performance in system operation
 - Required (or recommended) design specifications (e.g., impedance profiles) of the components for similar application

Who and How to Determine PDS Design Specifications (Cont.)

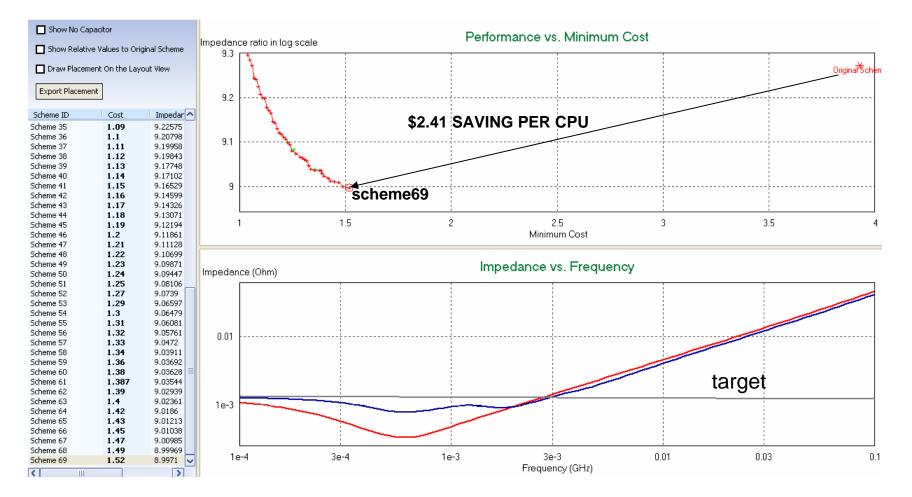
Benefits of the database library

- Important reference on the characteristics and actual performance of PDS in previous products
- Generate PDS design specifications for the components to be used in new systems for similar applications
- Help to generate PDS design specifications (through certain extrapolation) for the components to be used in new systems for different applications
- Help to generate PDS design specifications (through certain extrapolation) for new components



Decoupling Capacitor Placement and Selection

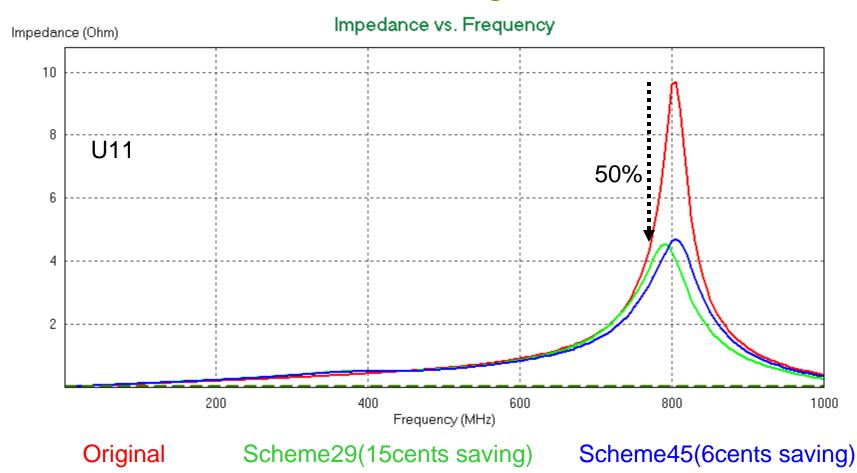
- With a given target PDS performance (or design specification), there are numerous options in the selection of decoupling capacitors
 - Where to put
 - How many needed
 - Which capacitor to choose from at each location
 - What are the cost constrains
 - What are the space constrains
 - What are the impacts if certain capacitors do not function


Case Study – Cost reduced by more than 25% without sacrificing performance

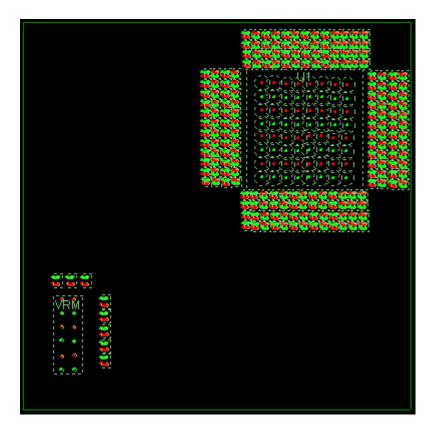
SIGRITY

	Average impedance ratio	Cost(\$)
Original design	13.1600	4.95
Optimum design	13.1594	3.72

Case Study - Eliminate over design and get \$4.82 cost saving on a two CPU motherboard


Red: original design

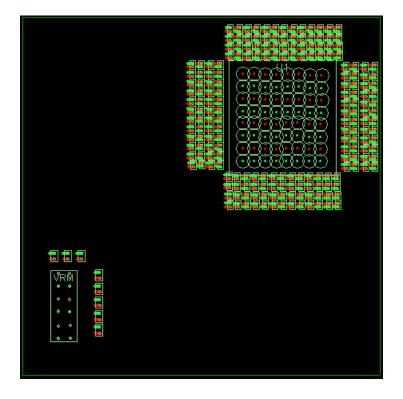
Blue: scheme 69


SIGRITY

Case Study - Resonant peak is reduced by 50% while saving 6-15cents

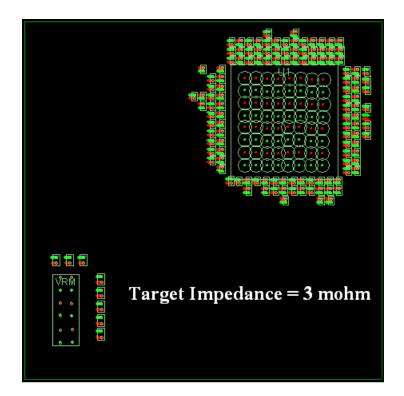
SIGF

Case Study – PDS Optimization in Pre-Layout Design



200 possible locations of decaps for U1

8 decaps for VRM (won't be included in Optimization)


Use 1uF for all 200 decaps and 330uF for VRM decaps for original decap setup (users can use any decap values as they wish)

Before and After Decap Optimization

Before

- 200 x 1uF

SIGRITY

After

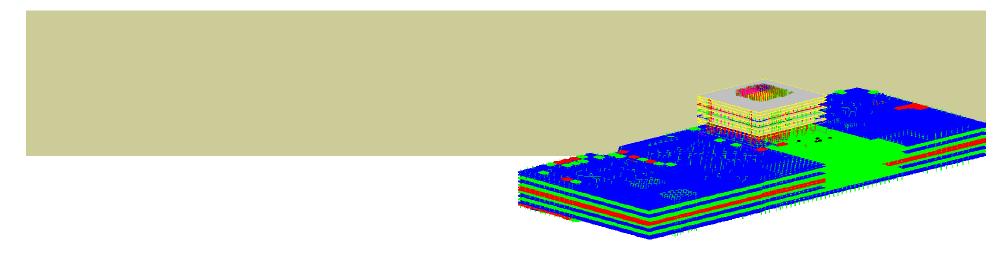
- 38x100nF 32x470nF
- 13x4.7uF 40x1.0uF

Total decaps = 123

Identify Effective/Ineffective Decap Locations

Scheme ID	Cost	Impedance	e ra C1	C7	C12	C14	C18	C19	C25	C29	C34	C37	C42	C44	C47	C50	C54	C56	
Scheme 1	0.17671	17.6124	9	Х	X	X	6	Х	5	Х	5	5	Х	X	Х	Х	X	7	
Scheme 2	0.17695	17.479	6	Х	X	Х	6	6	5	Х	5	5	5	X	Х	Х	Х	Х	
Scheme 3	0.17813	17.4786	6	Х	X	X	6	Х	6	Х	5	5	6	X	Х	Х	X	7	
Scheme 4	0.1833	17.4781	5	Х	X	X	6	Х	6	Х	5	5	5	X	Х	Х	X	14	
Scheme 5	0.18448	17.4351	6	Х	X	X	6	Х	6	Х	5	5	5	X	Х	Х	Х	7	\mathbf{v}
Scheme 6	0.18965	17.4201	5	Х	X	Х	5	Х	6	5	5	5	5	X	Х	Х	X	Х	$\mathbf{\Lambda}$
Scheme 7	0.19083	17.3998	6	Х	X	Х	6	Х	5	Х	5	5	5	X	Х	Х	Х	7	
Scheme 8	0.196	17.3901	5	Х	X	Х	5	5	5	Х	5	5	5	X	Х	Х	Х	Х	
Scheme 9	0.19718	17.3712	5	Х	X	X	5	Х	6	Х	5	5	5	X	Х	Х	X	7	
Scheme 10	0.20353	17.3475	5	Х	X	X	5	Х	5	Х	5	5	5	X	Х	Х	X	7	
Scheme 11	0.20613	17.3408	6	Х	X	X	6	Х	6	Х	5	5	5	X	6	Х	X	7	
Scheme 12	0.2113	17.3293	5	Х	X	X	5	Х	6	5	5	5	5	X	6	Х	X	Х	
Scheme 13	0.21248	17.3097	5	Х	X	X	6	Х	6	6	5	5	5	X	Х	Х	Х	7	
Scheme 14	0.21765	17.3008	5	Х	X	X	5	5	5	6	5	5	5	X	Х	Х	Х	Х	
Scheme 15	0.21883	17.2806	5	Х	X	X	5	Х	6	6	5	5	5	X	Х	Х	Х	7	
Scheme 16	0.224	17.2805	5	Х	X	Х	5	5	5	5	5	5	5	X	Х	Х	X	Х	
Scheme 17	0.22518	17.2584	5	Х	X	X	5	Х	6	5	5	5	5	X	Х	Х	X	7	
Scheme 18	0.22778	17.2518	6	Х	X	Х	6	6	6	Х	5	5	5	Х	6	Х	Х	7	
Scheme 19	0.23153	17.2421	5	Х	X	X	5	Х	5	5	5	5	5	X	Х	Х	X	7	
Scheme 20	0.23295	17.2387	6	Х	X	X	5	6	5	5	5	5	5	X	6	Х	X	Х	
Scheme 21	0.23413	17.2156	6	Х	X	X	6	6	5	Х	5	5	5	X	6	Х	Х	7	
Scheme 22	0.2393	17.2097	6	Х	X	Х	5	5	5	5	5	5	5	X	6	Х	Х	Х	
Scheme 23	0.24048	17.1883	6	Х	X	Х	5	Х	5	6	5	5	5	X	6	Х	Х	7	
Scheme 24	0.24683	17.168	5	Х	X	X	5	Х	6	5	5	5	5	X	6	Х	X	7	
Scheme 25	0.24943	17.1645	6	Х	X	X	6	6	6	6	5	5	5	X	6	Х	X	7	
Scheme 26	0.25318	17.1552	5	Х	X	Х	5	5	5	Х	5	5	5	X	6	Х	X	7	
Scheme 27	0.25578	17.1287	6	Х	X	X	6	6	5	6	5	5	5	X	6	Х	X	7	
Scheme 28	0.26213	17.1067	6	Х	X	X	5	6	5	6	5	5	5	X	6	Х	X	7	
Scheme 29	0.26848	17.0845	6	Х	X	Х	5	6	5	5	5	5	5	X	6	Х	X	7	
Scheme 30	0.27483	17.0652	6	Х	X	X	5	5	5	5	5	5	5	Х	6	Х	Х	7	
Scheme 31	0.27743	17.063	6	6	X	X	6	6	6	5	5	5	5	X	6	Х	Х	7	
Scheme 32	0.28118	17.0526	5	Х	X	Х	5	5	5	5	5	5	5	X	6	Х	X	7	
Scheme 33	0.28352	17.0526	4	Х	X	X	5	5	5	5	5	5	5	X	6	Х	X	7	
Scheme 34	0.28378	17.039	6	6	X	Х	5	6	5	6	5	5	5	X	6	Х	X	7	
Scheme 35	0.29013	17.018	6	6	X	X	5	6	5	5	5	5	5	X	6	Х	X	7	
Scheme 36	0.29648	16.9986	6	6	X	Х	5	5	5	5	5	5	5	X	6	Х	X	7	
Scheme 37	0.30283	16.9877	5	6	X	Х	5	5	5	5	5	5	5	X	6	Х	Х	7	
Scheme 38	0.30543	16.9857	6	6	Х	X	6	5	5	6	5	5	5	X	6	6	Х	7	
Scheme 39	0.30918	16.9816	5	6	Х	X	5	5	5	5	5	5	5	X	5	Х	X	7	
Scheme 40	0.31178	16.9642	6	6	X	X	6	5	5	5	5	5	5	X	6	6	X	7	
Scheme 41	0.31813	16.9434	6	6	X	Х	5	5	5	5	5	5	5	X	6	6	Х	7	
Scheme 42	0.32448	16.9338	5	6	X	X	5	5	5	5	5	5	5	X	6	6	X	7	
Scheme 43	0.33083	16.9295	5	5	X	X	5	5	5	5	5	5	5	X	6	6	X	7	
Scheme 44	0.33718	16.9231	5	5	X	X	5	5	5	5	5	5	5	X	5	6	X	7	
Scheme 45	0.33978	16.9123	6	6	X	Х	5	5	5	5	5	5	5	6	6	6	Х	7	
Scheme 46	0.34613	16.9026	5	6	X	X	5	5	5	5	5	5	5	6	6	6	X	7	
Scheme 47	0.35248	16.8909	5	6	X	Х	5	5	5	5	5	5	5	5	6	6	Х	7	
Scheme 48	0.36117	16.8882	5	4	X	Х	5	5	5	5	5	5	5	5	6	6	X	7	
Scheme 49	0.36752	16.8865	5	5	X	Х	5	5	5	5	5	5	5	4	5	6	X	7	

X = not populated



Summary

- It is essential to establish design specifications for power delivery systems
- It is very important to establish a streamlined process for power delivery system design in the overall system design flow
- Optimization can play a very important role in the implementation of power delivery systems to achieve better performance, lower cost, smaller area, and shorter time-tomarket

Thank You!

