Greetings from Georgia Tech

Modeling Challenges for Power Distribution Analysis

Madhavan Swaminathan *Joseph M. Petit Professor in Electronics Deputy Director, Packaging Research Center

Outline

Power Distribution – Where are we today ?

What are the future Challenges in Power Distribution ?

□ A few examples to illustrate these challenges

Georgia Institute of Technology - PRC

Power Distribution A Decade of Progress

Georgia Institute of Technology - PRC

FDIP

New System Drivers

- Chip Multi-processing
- Trend Towards Convergent Heterogeneous Systems
- Emergence of SIP and SOP as new integration approaches
- Move towards embedded technologies
- Transition to Cu Low K and Ultra Low K dielectrics by Semiconductor Industry
- Combination of Chip and Package Integration for system miniaturization leading to new concepts in Chip – Package Co-Design
- How do these drivers affect Power Distribution as we know it today ? What should the focus be for tool development in the future ?

Chip Multi-Processing

Niagara (SUN) Courtesy: S. Borkar, Intel

- Multi-core, each core Multi-threaded
- Shared cache and front side bus
- Each core has different Vdd & Freq
- Core hopping to spread hot spots
- Lower junction temperature

Multi-core Processors (Reverse Scaling)

Georgia Institute of Technology - PRC

FDIP

Power Distribution Challenges

□ Chip – Package Co-Design

Modeling of Multi-scale Structures

Managing electromigration in Cu Low K/Ultra Low K Dielectrics

Methods for computing current density and Joule heating at high frequencies

Managing Coupling

- Problem has moved from the source (digital) to the sink (Analog/RF)
- Use of embedded technologies
- Methods for modeling coupling in fine geometries with > -100dB accuracy

□ Managing Eye with Minimum jitter

- Use of embedded technologies
- Methods for Frequency to Time conversion

Chip – Package Co-Design

Georgia Institute of Technology - PRC

Chip on Package on System Board

Georgia Institute of Technology - PRC

Multiscale Modeling for Chip-Package Co-Design Challenges

niemod emiT ni noitietimiL noitibnoD theruoD

EM Simulation

Smallest mesh dimension determines the time-step

$$\Delta t \le \frac{1}{v_{\max}} \left(\left(\frac{1}{\Delta x} \right)^2 + \left(\frac{1}{\Delta y} \right)^2 + \left(\frac{1}{\Delta z} \right)^2 \right)^{-\frac{1}{2}}$$

FDTD & Laguerre FDTD - Formulation Ez \times Marching on Time Marching on Degree E_0, E_1, \dots, E_q E₇ H_v # of Coefficients << # of Time steps

Basis Functions

20

25

30

15

Time-domain

FDIP

0

-0.5 _____0

p=3

10

p=1

5

Georgia Institute of Technology - PRC

Laguerre Based FDTD Method

On-Chip Coupled Lines (15 000 cells)

FDIP

Even if the length is 10mm, the Courant condition is still $\Delta t = 2 \times 10^{-16}$

Solver	Time	Memory
FDTD	2160 min. (36 hours)	1 kB
SLeEC	30 min.	150 MB

Copper Low K and Ultra Low K

Georgia Institute of Technology - PRC

Move to Cu Low K/Ultra Low K

- Cu is a better conductor in terms of resistance capacitance delay
- Miniaturization

FDIP

Major concern is electromigration

Ref: Havemann And Hutchby: High-performance Interconnects, Proceedings of The IEEE, VOL. 89, NO. 5, MAY 2001

DC and High Frequency Effects in UBM

Mean Time To Failure (MTTF) can decrease due to increased current densities

Maximum current density allowed in solder joints is lower than Cu.

Modeling of current densities is needed to define interface metallurgies to maximize MTTF and extract Resistance and Inductance

High Frequency Modeling – IC to Interposer DC – 77 GHz

□ High-frequency effects in conductors

- o Skin effect
 - o As frequency increases, currents flows through the outer edge of conductor cross section.
 - o Effective area of current flowing decreases, resulting in current flow almost on the outer surface.
 - o Resistance increases with square root of frequency.
 - o Inductance decreases since the internal inductance vanishes.
- o Proximity effect
 - o When a conductor is near another conductor, currents crowd to a certain region at the outer edge.
 - o Resistance increases with frequency.
- o Both effects important for UBMs and Package Interconnects
 - o When a conductor is near another conductor, currents crowd to a certain region at the outer edge.
 - o Resistance increases with frequency.

□ Importance of high-frequency modeling in conductors

- Increases conductor loss making signal transmission inefficient at high frequencies.
- Higher local current density causes increased electromigration effects

FDIP

Georgia Institute of Technology - PRC

Current density distribution (100 MHz, 1 GHz)

Georgia Institute of Technology - PRC

Oct 28, 2007

FDIP

Current Density

Current density increase with frequency

• Point 1: affected by skin & proximity effects

Frequency Dependent Loop Resistance (Self and Mutual)

Frequency Dependent Loop Inductance (Self and Mutual)

o At low frequencies, all
inductances are mainly functions
of distance between lines.
o At high frequencies, inductances
decrease due to proximity effects.

Georgia Institute of Technology - PRC

Computing Coupling and Isolation in Power Distribution

Georgia Institute of Technology - PRC

Chip on Package on System Board

FDIP

Georgia Institute of Technology - PRC

FDIP

Georgia Institute of Technology - PRC

Georgia Institute of Technology - PRC

Coupling into Metal Layer 3

Frequency Sweep from 0.1 to 5GHz

Georgia Institute of Technology - PRC

Coupling from Top to Bottom Layer

State-of-the-art

	FEM	FDTD	Cavity Resonator	ТММ	M-FDM
Arbitrary plane geometries	Yes	Yes	Difficult	Yes	Yes
Arbitrary port locations	Yes	No	Yes	No	No
Calculating noise voltage distribution on each node	Yes	Yes	Difficult	Yes	Yes
Skin effect and substrate losses	Yes	Difficult	Yes	Yes	Yes
Fringe and gap fields	Difficult	Difficult	Difficult	Difficult	Yes
Speed	Good	Good (time domain)	Good for solid rectangular planes	Good	Good
Multilayered planes	Difficult	Difficult	Difficult	Yes (neglects wrap-around currents)	Yes (includes wrap-around currents as well)

Very Important Effect

Ref: Madhavan Swaminathan and Ege Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Pretice Hall 2007

FDIP

Georgia Institute of Technology - PRC

Chip-last Embedded Actives

- Cavity size: 4.5×9.0 mm² & 7.0×7.0 mm²
- Cavity depth: 130 um
- 100 um thick chips are embedded with solder bumps

Georgia Institute of Technology - PRC

Coupling through Cavities

Without Cavity

With Cavity

FDIP

Georgia Institute of Technology - PRC

Embedded EBG Structures Modeling of fine and large metal structures

Georgia Institute of Technology - PRC

FDIP

Embedded Decoupling in Package

Embedded Capacitors

Capacitor	ESC(nF)	ESL(pH)	ESR(mohms)
Size(mm×mm)			
1.198×1.198	2.84	42.6	16
2×2	8.772	23.8	10.36

Frequency to Time Conversion for Managing Eye and Jitter

Georgia Institute of Technology - PRC

Chip on Package on System Board

Georgia Institute of Technology - PRC

Transient Simulation with Band-Limited Data

Frequency to Time Conversion

Focus of this presentation

				¥			
Method	Ports	Stability	Passivity	Causality	Convolution	Problem Type	Robustness
Rational Function	Limited	Yes	Yes	No	O(MN)	Arbitrary	Medium
Signal Flow Graph	Unlimited	Yes	Yes	Yes	O(NlogN)	Distributed networks	Medium
MNA+S- Parameter	Unlimited	Yes	Yes	Yes	O(NlogN)	Distributed networks	High

Beaten to death at EPEP

FDIP

Ref: Madhavan Swaminathan and Ege Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Pretice Hall 2007

Georgia Institute of Technology - PRC

Causality Enforcement Techniques

Causal Vs Non-Causal Simulation

Book on Power Integrity The First Book on Power Integrity Modeling! FOR MORE INFORMATION PLEASE VISIT: <u>www.prenhallprofessional.com/title/0136152066</u> Availability: Nov '07

Power Integrity Modeling AND Design FOR Semiconductors AND Systems

Madhavan Swaminathan • A. Ege Engin

Provide Hall Meders Servicesdorme Design Series

ISBN: 0_13_615206_6

Chapters
 Basic Concepts
 Plane Modeling
 Simultaneous Switching Noise
 Time Domain Simulation Methods
 Applications

Provides a comprehensive discussion of the methods available for Power Integrity
 Modeling

Contains several examples that can be reproduced using the provided software