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1 Power Distribution — Where are we today ?

1 What are the future Challenges in Power
Distribution ?

1 A few examples to illustrate these challenges
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Power Distribution
A Decade of Progress

o Sophistication of tools |
o Tool validation

o Focus on digital
applications

0 Methods for minimizing
impedance

First
Commercial
Tools

Impedance
Target
Impedance
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New System Drivers

O Chip Multi-processing

d Trend Towards Convergent Heterogeneous Systems

O Emergence of SIP and SOP as new integration approaches
O Move towards embedded technologies

O Transition to Cu Low K and Ultra Low K dielectrics by Semiconductor
Industry

O Combination of Chip and Package Integration for system miniaturization
leading to new concepts in Chip — Package Co-Design
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SHIPAVIUIUEEROCESSING

C1 C2

C3 C4

* Multi-core, each core Multi-threaded

* Shared cache and front side bus

| __ﬂ_}fi == Each core has different Vdd & Freq
Niagara (SUN)  * Core hopping to spread hot spots

Courtesy: S. Borkar, Intel ~®  LOWETr junction temperature
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Multi-core Processors (Reverse Scaling)
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Poyer Distriottion Crizllenejes

d Chip — Package Co-Design
e Modeling of Multi-scale Structures

 Managing electromigration in Cu Low K/Ultra Low K
Dielectrics
e Methods for computing current density and Joule heating at high
frequencies
d Managing Coupling
e Problem has moved from the source (digital) to the sink (Analog/RF)
e Use of embedded technologies
e Methods for modeling coupling in fine geometries with > -100dB
accuracy
d Managing Eye with Minimum jitter
e Use of embedded technologies
e Methods for Frequency to Time conversion
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Chip — Package Co-Design
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ChipiontPackageionisystemboard

Chip-Package Transitions
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Multiscale Modehngifor Chip-Package Co=Design

Challenges

- Solder Ball
= -~ _-~Barrier Metal
¥ __~Copper Post
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Polyimide __—
Layer >

SiWafer = v
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GCotrantconditioniimitationinsiimerbDomain
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FDTD & Laguerre FDTD - Formulation
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Basis Functions
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Laguerre Based FDTD Method

FOTD Vs, Laguerre-FOTD Lagusrme Coeficents i represem the Triangular SVavetomm
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Copper Low K and Ultra Low K
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Move to CulLow K/ Ultra Low K

o0 Cu is a better conductor in terms of resistance
capacitance delay

o Miniaturization
o Major concern is electromigration
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D andibightEreguencyEfecisunpuBi

(a)current Crowding at

DC and High FregAu

U Mean Time To Failure (MTTF) can decrease due to increased current densities
0 Maximum current density allowed in solder joints is lower than Cu

0 Modeling of current densities is needed to define interface
metallurgies to maximize MTTF and extract Resistance and Inductance
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: e _ 7 Cirl/
Q0 High-frequency effects in conductors
o Skin effect

o As frequency increases, currents flows through the outer edge of
conductor cross section.

o Effective area of current flowing decreases, resulting in current flow almost
on the outer surface.

0 Resistance increases with square root of frequency.
0 Inductance decreases since the internal inductance vanishes.

o Both effects important for UBMs and Package Interconnects

o When a conductor is near another conductor, currents crowd to a certain
region at the outer edge.

0 Resistance increases with frequency.

O Importance of high-frequency modeling in conductors

 Increases conductor loss making signal transmission inefficient at high
frequencies.

e Higher local current density causes increased electromigration effects
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Currentidensitydistrabution {0z NG Z)
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GUrrentibensity

Point 2
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Ereguency/DependentioppiResistance
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Ereguency/bDependentioppinductance
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Computing Coupling and Isolation in Power Distribution

Georgia Institute of Technology - PRC Oct 28, 2007




ChipiontPackageionisystemboard
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Ultra-Miniaturized Mobile Computing Platform

1.
RECONFIGURABL'=
MIMO ANTFNNAS

3. THIN FILM
PASSIVE
COMPONENTS
R,L,C, TLINES

RECONFIGURABILITY AT
g) L7
/> Vo — //
. LT L 7L 7L
]
|
RIBISIRIB]IDIS) Y °
L7 - —

2. LOW LOSS
SWITCHES
FOR Logic+Memory+RF

W W W

o

Processor
Flip Chip

| A
V|V V.V

4. TUNABLE 3.
MATERIALS EII\/éBEDDED
FOR

RECONFIGURABILITY

AND EMI REDUCTION

FDIP

Georgia Institute of Technology - PRC Oct 28, 2007




SR
e
et

€

- ot
oot
s ety
Tetolualelots o >,
et alettited

s
i

5
oo

7

e
Coa
%
2
!

e

ettt <
SRR : Se
ettt s A KA,
o e
oe#u-w'wuw.mo.w.w.m-

Ver
ing

(Coupl

Georgia Institute of Technology - PRC

DR

C
—
o
- =)
a
>
-5
S
O
L

Ion

(Excitat




R
COUPHNGNRLOMV ELaliEayErss

-i='

kestz_laverl

Frequency Sweep from 0.1 to 5GHz
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CouplingiromuopitorBottonliayer:

Frequency response
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dULCEOISUNICEa U
FEM FDTD Cavity TMM M-FDM
Resonator
Arbitrary plane Yes Yes Difficult Yes Yes
geometries
Arbitrary port Yes No Yes No No
locations
Calculating noise Yes Yes Difficult Yes Yes
voltage distribution
on each node
Skin effect and Yes Difficult Yes Yes Yes
substrate losses
Fringe and gap Difficult Difficult Difficult Difficult Yes
fields
Speed Good Good (time Good for solid | Good Good
domain) rectangular
planes
Multilayered planes Difficult Difficult Difficult Yes (neglects Yes (includes
wrap-around wrap-around
currents) currents as
well)
—

Ref: Madhavan Swaminathan and Ege Engin, “Power Integrity Modeling and Design for
Semiconductors and Systems”, Pretice Hall 2007
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= Cavity size: 4.5x9.0 mm?2 & 7.0x7.0 mm?
= Cavity depth: 130 um
= 100 um thick chips are embedded with solder bumps
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Coupling through Cavities

Power plane 2
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EmbeddediEBGISLIUGCLUTES
Modelingoriineandiarge metal stiictures

Primary Band Gap

Same as predicted by
Dispersion Diagram
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Embedded Decoupling in Package
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4

Solid- Measurement
Dashed - Model

Impedance(Ohms)

FreguencyiHz)

Capacitor ESC(nF) | ESL(pH) | ESR(mohms)
Si1ze(mm X mm)
1.198x1.198 2.84 42.6 16

2x2 8.772 23.8 10.36
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Frequency to Time Conversion for Managing

Eye and Jitter
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ChipiontPackageionisystemboard
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diransientSimulationwithrBand=liimitediData

Multiport
Frequency-Domain
Data

What is the
time-domain
output?
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Method
Rational
Function

Signal Flow
Graph

MNA+S-
Parameter

rracitaney it Tirna Convarsion

Ports

Limited

Unlimited

Unlimited

Stability Passivity

Yes Yes
Yes

Yes

Yes Yes

Causality

No

Beaten to death at EPEP

Convolution

O(MN)

O(NlogN)

O(NlogN)

Problem
Type

Arbitrary
Distributed
networks

Distributed
networks

Robustness

Medium

Medium

High
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Causality and Its Importance
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OrigimoiNoncausality
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Causality Enforcementilechniques

Minimum-phase
Reconstruction
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Causal Non-Causal

100 mV difference in Eye Opening
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BOOKONPowerintegrLy

www.prenhallprofessional.com/title/0136152066
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