A Critical Assessment of the State of the Art in Multiscale Multiphysics Modeling of Microelectronics

> Jayathi Y. Murthy Professor School of Mechanical Engineering Purdue University

Package (10⁻² m)

Multiscale

Heat Sink (10⁻¹m)

Transistor (10⁻⁹ m)

Ravi Mahajan: Intel

COMET Laboratory for Computation

ies

Facility (10² m)

TEM cross-section of a multilevel interconnect, Intel Corp.(2000)

Multiphysics

M. Cuitiño, M. Koslowski, M. Ortiz, D. Pantusso and S. Shankar, 2004

F.J. Mesa-Martinez, et al, 2007.

COMET

Electrical performance and mechanical integrity linked strongly to temperature.

Correct prediction of temperature coupled to power essential at a range of scales!

Motivation for Thermally-Aware Circuit Design

Thermal Runaway

•Decrease in V_{DD} has necessitated drop V_t and increase in sub-threshold leakage

•Exponential dependence of leakage current on local temperature

- Large range of scales
 - Transistors ~100 nm
 - Gate ~ 500 nm
 - Circuits ~10-100 microns
 - Spot cooling ~100's of microns
- Multi-scale simulation necessary

Integrated Electrothermal Optimization Engine

Architectural Level Microarch. design, multicore tradeoffs

RTL Level Task Migration, performance mitigation, floorplanning

Logic/Circuit Level ET placement, routing, performance mitigation ~100 blocks

~10 blocks

1 mm-2 cm

100 µm – 1 mm

~10K-10M blocks

100 nm – 100 μm

Adapted from Sapatnekar, 2007

Electrothermal Transport at Device Scale

Sub-micron Heat Conduction in Semiconductors and Dielectrics

(a) $\Lambda << L$ Fourier's Law valid

http://www.intel.com/pressroom/archive/releases/20030 612tech.htm •Phonons are quanta of lattice vibrations.

•Main carriers of energy in semiconductors and dielectrics.

 In many emerging devices, length scales fall in Regime (b)

Tri Gate

Heat Transport in Solids

Frequency vs. reduced wave number in (100) direction for silicon

Boltzmann transport equation for phonons:

Relaxation time approximation

Phonons are characterized by (**r**, t, **K**) and polarization

What Happens on the Nanoscale?

- Boundary scattering critical as surface to volume ratio decreases
- Scattering retards forward progress and decreases energy transfer from one boundary to another
- Phonon confinement effects decrease phonon group velocity
- Predominance of interfaces increases the important of interface resistance (Kapitza resistance)

Interface Physics: Acoustic Impedance

Thermal Conductivity Reduction

Temperature Comparison

What's Missing?

- Nearly all available device simulators lack sub-micron thermal physics
- Little attention to interfaces
- Drift-diffusion/Fourier conduction increasingly invalid as channel lengths fall below phonon mean free path (~300 nm)
- Power estimation through drift-diffusion solvers for charge transport
 - hot-spot may be displaced by ~30 nm
- Few self-consistent solvers
- Expensive to compute how to include into larger-scale models?

Integration of Electrothermal Transport at Larger Scales

Thermal Runaway: Previous Work

 Thermal runaway calculations based on junction temperature

$$T_{j} = T_{a} - P_{total}\left(T_{j}\right)\theta_{ja}$$

- θ_{ia} is a measure of *overall* package resistance
- Not much use in dealing with *local* phenomena
- Can we use more sophisticated (and local) measures of thermal resistance?

Compact Model Creation

Detailed Gate Level Models

- NAND gate, NOR gate and inverter (INV) considered
- 28 nm technology
- Metallic contacts included but not metallization layers
- Source, drain, gate, channel included
- Fourier conduction assumed
- •Volumetric heat generation using TAURUS

Cell-Level Compact Thermal Model

- Represent each gate by a cuboidal cell with six given boundary temperatures
- Write cell average temperature as

$$T_{avg} = \sum_{f=1}^{6} a_f T_f + a_0 \alpha q$$

• The six face heat transfer rates also written as

$$q_{bj} = \sum_{f=1}^{6} b_{fj} T_f + b_{0j} \alpha q$$
 j=1,2,...6

- Determine a and b coefficients by doing seven runs with seven linearly independent boundary condition sets
- α = activity; q = heat generation rate
- T_f = boundary face temperature

Multiscale Simulation

X3 Benchmark Circuit

Dynamic Power

Temperature Map

Benchmark circuit contains 900 cells and about 3000-4000 transistors

Self-Consistent Simulation

COMET

Example: ALU4 Benchmark Circuit

Typical temperature map

Effect of Activity

- Subthreshold leakage value shown is at room temperature
- At α=0.8, thermal runaway occurs for I >120 nA/um
- At α=0.5, thermal runaway occurs for I>150 nA/um

Current State of the Art

- Sheer geometric complexity
 - Most CAD tools cannot handle
- Sub-micron physics not included
 - Important for device/gate/circuit scale
 - Interface resistance important for local temperature
- Multiscale resolution
 - Impossible to handle all scales
 - "Compacting" at smaller scales essential
 - Take care how tool is used sub-micron effects important!
- Multiphysics
 - Nearly all available analysis tools are single-domain
 - Some degree of coupling in the electro-thermal domain (power-Fourier conduction)
 - Some degree of coupling of thermo-mechanical phenomena (stress-Fourier conduction)
 - Thermal boundary conditions on die tied to package-level thermals currently no direct or easy tie to packages such as ICEPAK

