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Electrical performance and
mechanical integrity linked
strongly to temperature.

Correct prediction of
temperature coupled to power
essential at a range of scales!
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Motivation for Thermally-Aware Circuit Design
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Thermal Runaway
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eDecrease in V5 has necessitated drop V,
and increase in sub-threshold leakage

eExponential dependence of leakage current
on local temperature

e Large range of scales
e Transistors ~100 nm
e Gate — 500 nm
» Circuits ~10-100 microns
e Spot cooling ~100’s of microns

e Multi-scale simulation necessary
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Integrated Electrothermal Optimization

Engine

Architectural Level
Microarch. design,
multicore tradeoffs

RTL Level

Task Migration,
performance mitigation,
floorplanning

Logic/Circuit Level
ET placement, routing,
performance mitigation

~10 blocks

1 mm-2 cm

~100 blocks
100 pm — 1 mm

~10K-10M blocks
100 nm — 100 um /

Adapted from

Sapatnekar, 2007




Electrothermal Transport at Device Scale
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Sub-micron Heat Conduction in Semiconductors
and Dielectrics

PV BNV

A<<L A>>L
(@) Fourier's Law valid (b) Fourier's Law invalid

Top Gate
o - - - - .
Side Gate v Silicon eMain carriers of energy in semiconductors and
14 Fin | dielectrics.

e In many emerging devices, length scales fall in
Regime (b)

ePhonons are quanta of lattice vibrations.

Sir:ie Gate
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Heat Transport in Solids

Boltzmann transport equation for
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What Happens on the Nanoscale?

= Boundary scattering critical as surface to volume ratio decreases

= Scattering retards forward progress and decreases energy transfer
from one boundary to another

= Phonon confinement effects decrease phonon group velocity
= Predominance of interfaces increases the important of interface

resistance (Kapitza resistance)

Specular boundary
scattering

Diffuse boundary Scattering on
scattering impurities

... | COMET

‘ - Laboratory for Computational Methods in Emerging Technologies



Interface Physics: Acoustic Impedance
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Thermal Conductivity Reduction
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Temperature Comparison

Computation for 0.15 Maximum
mW/um temperaturerise

Fourier 13.25 K

Gray 20.85 K

Non-gray (100 % 35.29 K
optical)

Metallization
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Non-gray (85 % 32.33K
optical)
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What's Missing?

= Nearly all available device simulators lack sub-micron
thermal physics

= ||ttle attention to interfaces

= Drift-diffusion/Fourier conduction increasingly invalid as
channel lengths fall below phonon mean free path (—300
nm)

= Power estimation through drift-diffusion solvers for
charge transport
= hot-spot may be displaced by ~30 nm

= Few self-consistent solvers

= Expensive to compute — how to include into larger-scale
models?
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Integration of Electrothermal Transport at
Larger Scales

| COMET

s o ~ Laboratory for Computational Methods in Emerging Technologies



Thermal Runaway: Previous Work

= Thermal runaway calculations based on junction
temperature

Tj — Ta - I:%otal (T )eja

|

= 0,,Is a measure of overal/ package resistance
= Not much use in dealing with /oca/ phenomena

= Can we use more sophisticated (and local) measures of
thermal resistance?

Metallization
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Compact Model Creation

Transistor
Level: FINFET

Compact
thermal
model of
NOR gate NOR
composed of gate
PMOS and
NMQOS FinFETs

Detailed
thermal
model of
NOR gate

NOR GATE
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3. 35002

Detailed Gate Level Models

« NAND gate, NOR gate and
inverter (INV) considered

e 28 nm technology

e Metallic contacts included but not
metallization layers

e Source, drain, gate, channel
«wc . Included

eFourier conduction assumed

o\Volumetric heat generation using
TAURUS



Cell-Level Compact Thermal Model

= Represent each gate by a cuboidal cell with six given
boundary temperatures

= Write cell average temperature as

6
Tavg — Z afo + aoaq
f=1

= The six face heat transfer rates also written as

6
Gy :beij +by,aq J=1.2,...6
fo1

= Determine g and b coefficients by doing seven runs with
seven linearly independent boundary condition sets

= o = activity; g = heat generation rate
= T, = boundary face temperature
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Multiscale Simulation
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X3 Benchmark Circuit
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Benchmark circuit contains 900 cells and about 3000-4000 transistors
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Self-Consistent Simulation

Input : Circuit netlist, test vectors

(1) Cell placement
(2) Calculate signal prob., activity

¥

(3) Calculate power dissipation
- Dynamic power, Static Power

1;' I
(4) Generate thermal map
(5) Update temperature of each gate

(8) Update static power

N
7) Positive Feedback?
Y
Output . Self-consistent
L Thermal Runaway
thermal map and power estimation
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Example: ALU4 Benchmark Circuit

T,=45°C
Chip Package
O
Interconnect layers L] = 3x102 [W/K/m?]
FinFET devices | ITh—IdI
Buried Oxide (Si0,) | ermatmode
Wafer (Bulk-Si) = bottom
| Heat Spreader | @ = 1.4x10% [W/K/m?]
Heat Sink T,=45°C
ﬁ}_side !

w =20 (um) : ~ 40 cells

Circuit I 4 2
(] St ) o= 750000 Wi

i +——m> T_side =60°C

Typical temperature map
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Effect of Activity

alud = Subthreshold

AB0p - ;
o I s leakage value
g o . —o=08 shown Is at room
2 T I temperature
£ » = At o=0.8, thermal
e PR G runaway occurs
e ; ; for | >120 nA/um
8.5 1 1.5 2 2.5 3
Subthreshold Leakage (x 60nA/um) m At a:OS, thermal

runaway Ooccurs
for 1>150 nA/um
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Current State of the Art

= Sheer geometric complexity
= Most CAD tools cannot handle

= Sub-micron physics not included
= Important for device/gate/circuit scale
= |nterface resistance important for local temperature

= Multiscale resolution

= |mpossible to handle all scales

= “Compacting” at smaller scales essential

= Take care how tool is used — sub-micron effects important!
= Multiphysics

= Nearly all available analysis tools are single-domain

= Some degree of coupling in the electro-thermal domain (power-Fourier
conduction)

= Some degree of coupling of thermo-mechanical phenomena (stress-
Fourier conduction)

= Thermal boundary conditions on die tied to package-level thermals —
currently no direct or easy tie to packages such as ICEPAK

o ORI
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