Power Delivery Challenges for The Mobile Platforms

Tawfik Rahal-Arabi

Sr. Principal Engineer

Mobile Platform Architecture Development

Agenda

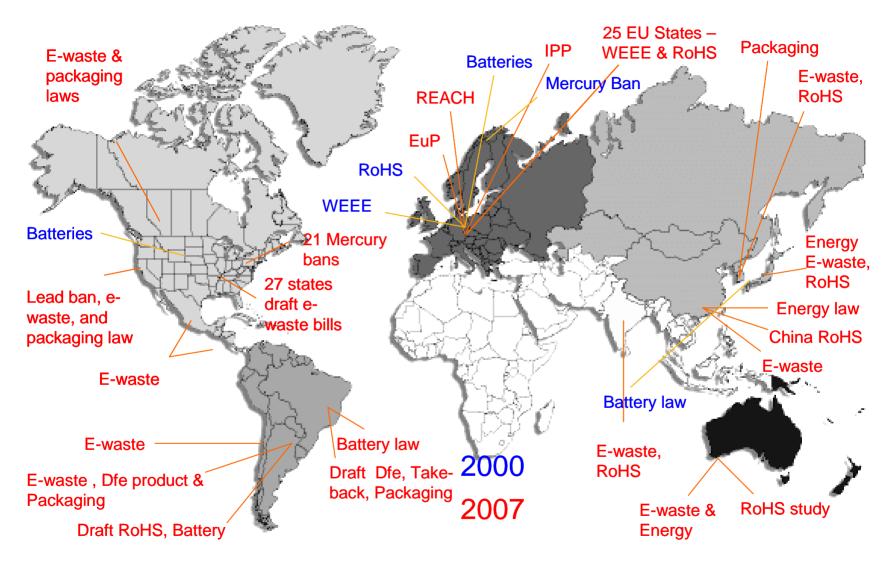
- Why Energy Efficiency
 - Power Delivery is an important piece of Energy Efficiency
- Mobile Platform Power Challenges
 - Thermal Design Power Load 10W Reduction From Previous Generations
 - 45 nm Process Technology
 - Managing Variations and Design Methodology
 - Energy Star and Battery Life Loads
 - Power Delivery Challenges
- Summary and Conclusions

Agenda

• Why Energy Efficiency

- Power Delivery is an important piece of Energy Efficiency
- Mobile Platform Power Challenges
 - Thermal Design Power Load 10W Reduction From Previous Generations
 - 45 nm Process Technology
 - Managing Variations and Design Methodology
 - Energy Star and Battery Life Loads
 - Power Delivery Challenges
- Summary and Conclusions

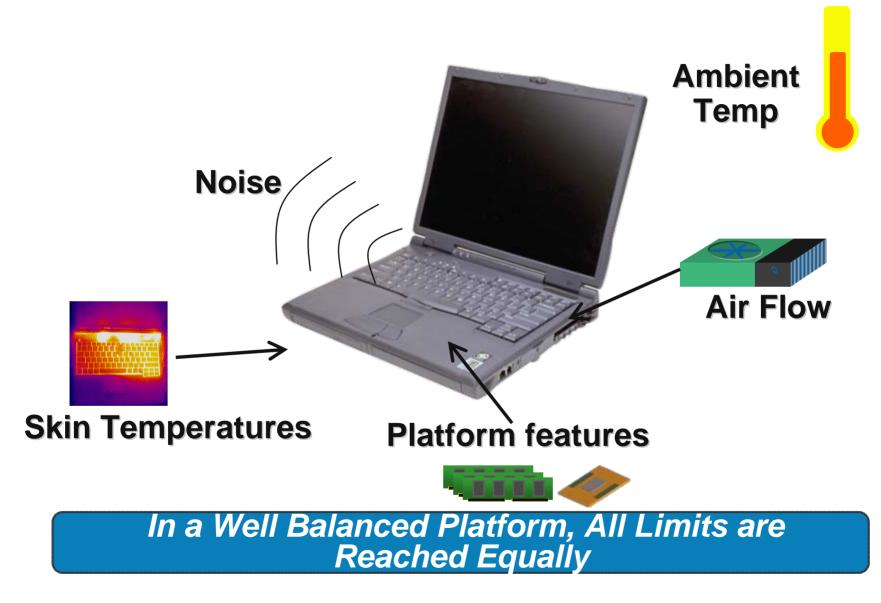
Premium Price of the Energy Efficiency

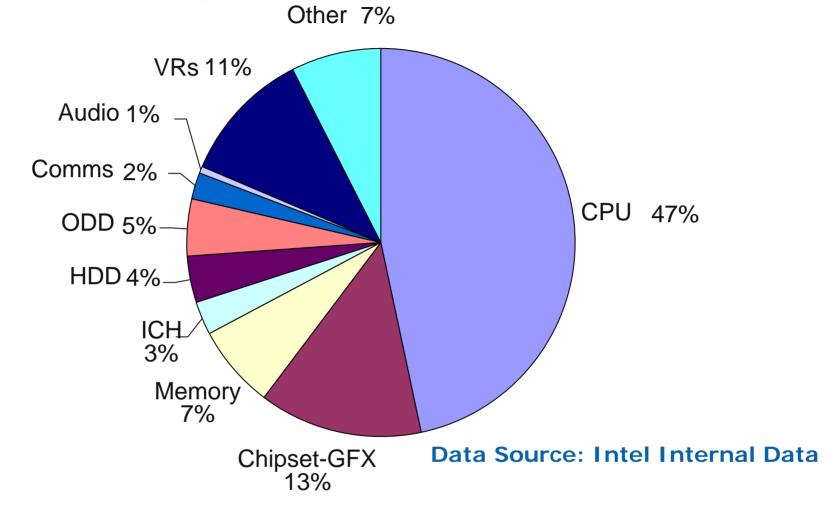

Source: NPD, 2000

Prices of Non-Energy Star vs. Energy Star Appliances

Category	Average Price of Non-Energy Star	Average Price of Energy Star	Energy Star Price Premium	
Dishwashers	\$376	\$404	7 %	
Air Conditioners	\$257	\$279	9 %	
Washing Machines	\$379	\$869	129 %	
Refrigerators	\$650	\$1,118	72 %	

Energy Star appliances command premium prices. In spite premium, the study indicates consumers are shopping for energy efficiency.


Regulation explodes – EU leading


Agenda

- Why Energy Efficiency
 - Power Delivery is an important piece of Energy Efficiency
- Mobile Platform Power Challenges
 - Thermal Design Power Load 10W Reduction From Previous Generations
 - 45 nm Process Technology
 - Managing Variations and Design Methodology
 - Energy Star and Battery Life Loads
 Power Delivery Challenges
- Summary and Conclusions

Cooling Thermal Design – Balanced Platforms

Thermal Design Power For a Typical Platform

CPU is Major Component In Determining Thermal Impedance

Platform Drives Component Power Targets

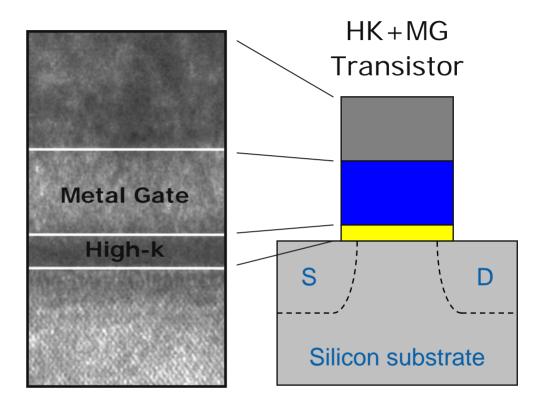
• Heat Removal

$$\Gamma^{----}$$
 Thermal Impedance
Cost, and Form Factor
 $T_j = T_a + \theta_{ja} P$

 $= V_{II} - Z_{II} = V_{II} - Z_{II}$ Electrical Impedance Cost, Form Factor Impact

Two Platform Impedances Drive Component Power Targets

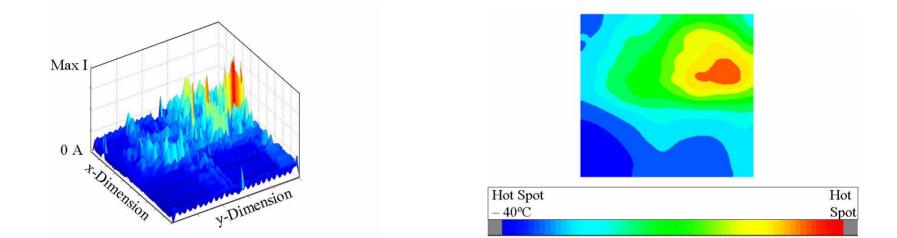
9


Beating the Scaling Curve

- Power is a cubic function of frequency
 - 20% reduction in frequency leads to 50% reduction in power
- How do we save power without sacrificing frequency?

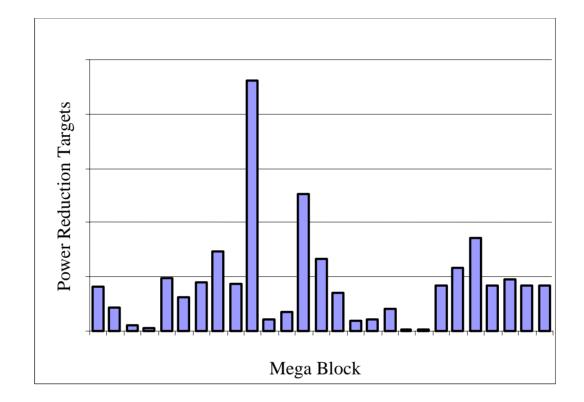
Power Reduction Without Performance Loss

High-k + Metal Gate Transistors


 ✓ High performance
 ✓ Low leakage
 ✓ Reduced Variations

"The implementation of high-k and metal gate materials marks the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s" — Gordon Moore

Managing Variations: Temperature and Voltage Gradients


- Conservative Design Methodology of Constant Temperature and Voltage Has a Power Penalty
 - Creates False Speed Paths That are Fixed by Increasing the Chip Power

Accounting for Voltage and Temperature Gradients Reduces Power and Improves Schedule

Data Source: Intel Internal Data

Managing Power: Mega Block Budgeting

Platform Based Power and Power Targets Are Translated to Fub Level Targets

25W CPU for Mobile Platforms

Metric	25W CPU
	10W decrease from 35W
Thin	~ 0.1"
	(platform thickness impact)
Light	
	Cooling
Cost	Cooling, Power Delivery
Acoustic	Significant (~3.5 dBA)
Temp	~3.5 °C skin temp

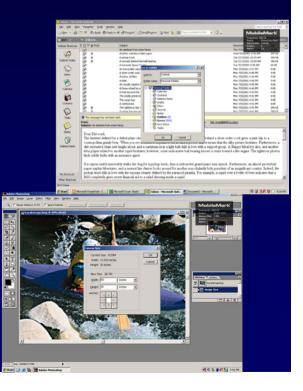
Agenda

- Why Energy Efficiency
 - Power Delivery is an important piece of Energy Efficiency
- Mobile Platform Power Challenges
 - Thermal Design Power Load 10W Reduction From Previous Generations
 - 45 nm Process Technology
 - Managing Variations and Design Methodology
 - Energy Star and Battery Life Loads
 - Power Delivery Challenges
- Summary and Conclusions

Energy Star vs. Battery Life

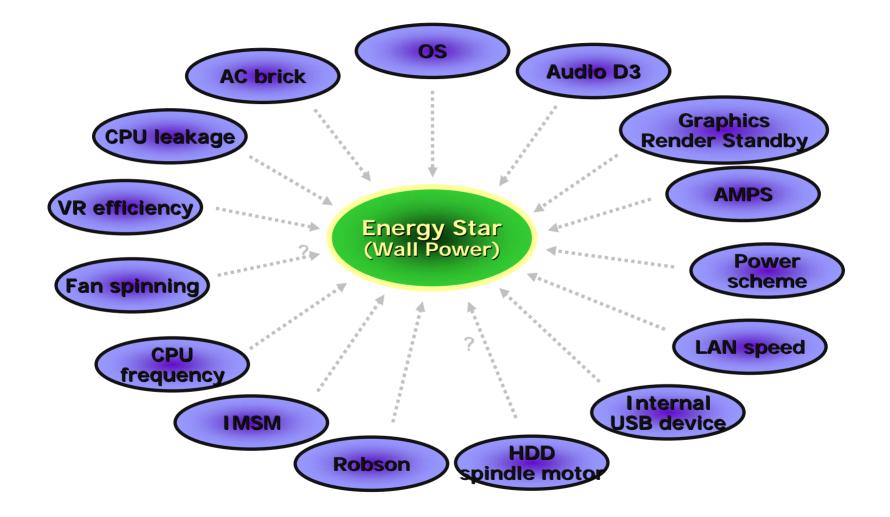
Energy Star (Idle & Standby)

Energy Savings in offices and homes



Battery Life (MobileMark2005)

Usage time with battery power in traveling



Energy Star Requirements for Notebooks

Configuration	SO	S3	S4, S5
Int Graphics, WOL disabled	= 14W	= 1.7W	= 1.0W
Int Graphics, WOL enabled	= 14W	= 2.4W	= 1.7W
Ext Graphics, WOL disabled	= 22W	= 1.7W	= 1.0W
Ext Graphics, WOL enabled	= 22W	= 2.4W	= 1.7W

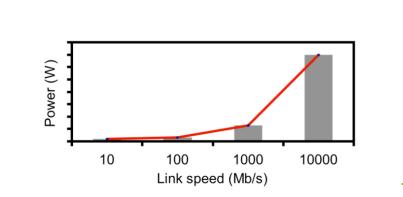
Requirements not easy to meet and will probably get tougher

Energy Efficiency Factors

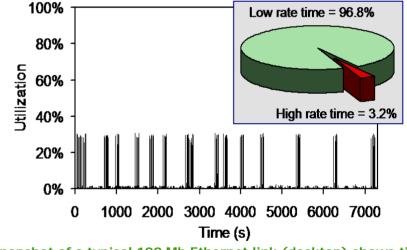
Summary

 Energy efficiency getting more prevalent for business and regulatory reasons

- Power Delivery is More Challenged for Lighter Loads than Maximum Power Loads
 - 25W CPU a 10W reduction from Previous Generation, Easier Power Delivery
 - Significant challenges to improve energy efficiency for light loads (energy star and battery life)
- Significant power savings Need to be Achieved In Several Components of the Platform


Acknowledgements

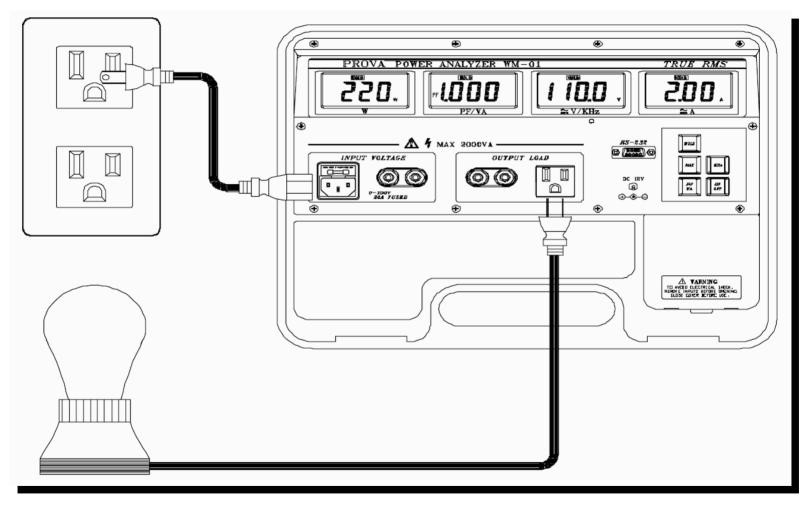
- Mark Bohr, Device Physicist, Intel Sr. Fellow
- Kaizad Mistry, Intel 45 nm Program Manager
- Kelin Kuhn, Device Physicist, Device Integration Lead
- Greg Taylor, Intel Fellow
- Eric Distefano, Platform Thermal Design Engineer
- Hee-Jun Park, Platform Energy Efficiency Design Engineer


A & **D**

Link Speed and LAN PHY Power

- Typically, very low link utilization. The LAN device power increase with high link speed
- "Energy Efficient Ethernet Call-For-Interest" IEEE 802.3 Working Group, Dallas TX, November 14, 2006
 - Reduce the link speed during low link-utilization

Intel supports IEEE 802.3 WG.


The snapshot of a typical 100 Mb Ethernet link (desktop) shows time versus utilization (trace from Portland State Univ.)

Reduce the link speed during low link-utilization

BACKUP

Equipment for Wall Power Measurement

- Power Analyzer Model 380801
 - http://www.extech.com/instrument/products/310_399/380801.html

Energy Star Requirements for Notebooks

Configuration	S 0	S 3	S4, S5
Int Graphics, WOL disabled	=14W	=1.7W	=1.0W
Int Graphics, WOL enabled	=14W	=2.4W	=1.7W
Ext Graphics, WOL disabled	=22W	=1.7W	=1.0W
Ext Graphics, WOL enabled	=22W	=2.4W	=1.7W

- If notebooks are to be shipped through <u>enterprises channels</u>, <u>WOL (Wake On LAN)</u> needs to be tested for Sleep and Standby, and an <u>additional 0.7W</u> power will be allowed
- If notebooks go directly to consumers through normal <u>retail</u> <u>channels</u>, <u>WOL may be disabled</u>
- Power is measured at the <u>AC wall outlet with a true RMS watt</u> <u>meter</u>
- Notebooks should have the battery pack(s) removed for all tests

Energy Star Requirements for Notebooks

- Power to wireless radios should be turned off for all tests
- Systems tested with <u>Ethernet connected to an active</u> <u>network switch</u> which supports the maximum speed of the system's NIC
- No power management parameters may be altered from OEM default except where specified
- Notebooks must set screen to blank after 1 minute
- starts 15 minutes after system reached OS prompt (or equivalent)
- Power is measured and <u>averaged over a 5 minute test</u> <u>period</u>