Design and Modeling of Through-Silicon Vias for 3D Integration

Ivan Ndip, Brian Curran, Gerhard Fotheringham, Jurgen Wolf, Stephan

Guttowski, Herbert Reichl

Fraunhofer IZM & BeCAP @ TU Berlin

IEEE Workshop on Future Directions in IC and Package Design (FDIP)

EPEP 2008, San Jose, CA

26th October 2008

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

- Quantification of Some EMR Problems caused by TSVs
- Methods for Enhancing RF Performance of TSVs in Low Resistivity Silicon
- On-going Activities to Overcome TSV Design & Fabrication Challenges

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

- Quantification of Some EMR Problems caused by TSVs
- Methods for Enhancing RF Performance of TSVs in Low Resistivity Silicon
- On-going Activities to Overcome TSV Design & Fabrication Challenges

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

To meet consumer demands for miniaturized, high-performance and lowcost products, 3D chip-stacked packages are needed.

TSVs offer many advantages over conventional bonding techniques in facilitating 3D integration.

A range of applications are emerging in which TSVs will be implemented to develop stacked and miniaturized electronic systems.

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer Institut Zuverlässigkeit und Mikrointegration

Example of Application: 60 GHz Antenna Module for WLAN Applications based on Wafer Level Packaging

Source: 3DASSM Consortium

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

IZM Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

Quantification of Some EMR Problems caused by TSVs

- Methods for Enhancing RF Performance of TSVs in Low Resistivity Silicon
- On-going Activities to Overcome TSV Design & Fabrication Challenges

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

Typical EMR Problems Associated with TSVs

Electromagnetic Reliability (EMR) Problems due to Lossy Nature of Silicon

At microwave frequencies, lossy nature of Si leads to severe signal attenuation and other signal/power integrity issues as well as EMI problems.

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

Si Conductivity from which Si Losses Dominate Conductor Losses – 1/4

Geometrical and Material Parameters Considered

• TSV diameter = separation distance between signal TSV and ground TSV = 40 μ m; Er = 11.9, bulk conductivity = VARIABLE

8

Used Analytical Approximations and 3D full-wave Simulations

Si Conductivity from which Si Losses Dominate Conductor Losses – 2/4

Using Analytical Approximations

Signal & return-current TSVs can be approximated as 2 conductor TML

Per-unit length parameters are given as

$$R' = \frac{R_s}{\pi a} \qquad L' = \frac{u}{\pi} \ln\left(\left(\frac{d}{2a}\right) + \sqrt{\left(\frac{d}{2a}\right)^2 - 1}\right) \qquad G' = \frac{\pi\sigma}{\ln\left(\left(\frac{d}{2a}\right) + \sqrt{\left(\frac{d}{2a}\right)^2 - 1}\right)}$$
$$C' = \frac{\pi\varepsilon}{\ln\left(\left(\frac{d}{2a}\right) + \sqrt{\left(\frac{d}{2a}\right)^2 - 1}\right)} \qquad \alpha = \sqrt{(R' + j\omega L')(G' + j\omega C')}$$

By setting G=0 & neglecting losses due to radiation & proximity effect, signal attenuation due to conductor & dielectric may be approximately considered separately.

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Si Conductivity from which Si Losses Dominate Conductor Losses – 3/4

Using Analytical Approximations

Signal & return-current TSVs can be approximated as 2 conductor TML

Si Conductivity from which Si Losses Dominate Conductor Losses – 4/4

Using Full-wave Simulations

The Insertion loss obtained using full-wave simulations shows same effect as predicted with analytical approximations

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer Institut Zuverlässigkeit und Mikrointegration

Intensity of EMR Problems caused by TSVs depends on Si Resistivity

Approximate range obtained from vendors

- Low Resistivity Silicon (LRS) = > 100 S/m, (< 1 Ohm cm)
- Medium Resistivity Silicon (MRS) = 5 10 S/m, (10 20 Ohm cm)
- High Resistivity Silicon (HRS) = < 5 S/m, (> 20 Ohm cm)

■ LRS is far more cheaper than MRS & HRS

Values considered

- LRS = 100 S/m
- MRS = 10 S/m
- HRS = 0.2 S/m

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer Institut Zuverlässigkeit und Mikrointegration

Impact of Resistivity on RF Performance of Unshielded TSVs – 2/2

Geometrical Parameters Considered

TSV diameter = separation distance between signal TSV and ground TSV = $40 \mu m$; TSV length = $200 \mu m$

■ Insertion Loss considered as example

Challenge: To use LRS (which is far more cheaper than MRS & HRS, but extremely lossy) to design high performance silicon-based system modules

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

гдм Fraunhofer _{Institut}

Zuverlässigkeit und Mikrointegration

Cross-talk in TSVs

- Decrease in the conductivity of the silicon results in:
 - A nearly 50% decrease in the losses
 - BUT, nearly no change in the cross-talk

TSV Cross-talk continues to be a problem, even when losses are manageable.

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

-10.00--15.00-Near End Cross-talk, S13 (dB) 5 S/m 10 S/m -35.00 -40.00-10.00 40.00 Freq [GHz] 50.00 70.00 80.00 0.00 20.00 30.00 60.00

Quantification of Some EMR Problems caused by TSVs

Methods for Enhancing RF Performance of TSVs in Low Resistivity Silicon

On-going Activities to Overcome TSV Design & Fabrication Challenges

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

Enhancing RF Performance of TSV in Low Resistivity Silicon – 1/4

Concept of Coax-TSVs

Enhancing RF Performance of TSV in Low Resistivity Silicon – 2/4

Coax-TSV (Si-filled) Vs Coax-TSV (Mixed-filled)

■ Coax-TSV (Si-filled): If Si is used as dielectric, there will be no improvement in RF performance

■ Coax-TSV (Mixed-filled): RF Performance is greatly enhanced if Si is partly replaced by low-loss dielectric e.g., BCB

Enhancing RF Performance of TSV in Low Resistivity Silicon – 3/4

Coax-TSV (Mixed-filled)

- Enhancement of RF performance depends on ratio of Silicon to BCB
- 3 different ratios were examined.

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer Institut Zuverlässigkeit und Mikrointegration

IZM

Enhancing RF Performance of TSV in Low Resistivity Silicon – 4/4

Coax-TSV (Low-loss dielectric-filled)

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

S/P

Si

Fraunhofer Institut Zuverlässigkeit und Mikrointegration

IZM

- Quantification of Some EMR Problems caused by TSVs
- Methods for Enhancing RF Performance of TSVs in Low Resistivity Silicon
- On-going Activities to Overcome TSV Design & Fabrication Challenges

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

Goal of 3D ASSM

■ Miniaturization of the entire electronic system using Si for ICs, packages, and boards. This approach is expected to result in high system performance at low cost and high reliability.

Academic Partners

- Georgia Tech (USA)
- KAIST (Korea)
- Fraunhofer IZM (Germany)

Proposing 20+ Projects & 3 Test Vehicles

Thrusts

- Electrical Design & Test
- Silicon Substrate with Multilayer Wiring
- Low-cost TSV & Stack Bonding
- Embedded Thin Film Actives & Passives
- System Interconnects

More Information: http://www.prc.gatech.edu/events/3dassm/index.htm

Electrical Design & Test Thrust

Objectives: Explore and develop design methodologies to enable ultraminiaturization and low cost hetero-integration addressing the challenges with the electrical properties of silicon.

Project	Previous Approach	Proposed Approach
Project A-1: Design of Interposer with Zero SSN	Minimize Noise using decaps and planes	Eliminate noise with power trans. lines and TSV
Project A-2: Design of Stack Bond with Vertical Shielding	Non-coaxial TSV CPW	Coaxial TSV SWLS Magnetic Film
Project A-3: Hybrid Equalization for over 10Gbps High Speed Channel	Either active or passive	Active and passive

Thank you very much for your attention!

Dept.: System Design & Integration RF & High-Speed System Design Group Head of Group: Dr.-Ing. Ivan Ndip

F**raunhofer** _{Institut} Zuverlässigkeit und Mikrointegration

