Design Considerations for Highly Integrated 3D SiP for Mobile Applications

FDIP, CA October 26, 2008

Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr

Terahertz Interconnection and Package Laboratory

Contents

- I. Market and future direction of 3D system in package
- II. Signal integrity issues in 3D SiP Design
- III. Power integrity issues in 3D SiP Design
- IV. Summary

Ubiquitous Mobile Life

3D System In Package

16GB Samsung NAND Flash, 8Gbx16

Terahertz Interconnection and Strappe Moritimo Kacta

3D Hamburger

Advantages of 3D SiP approach

□[·]Small form factor

 \Box Fast time to market

□[·] Inhomogeneous device integration

 \Box . Integration of passive devices, filters, and antenna

 \Box Suitable for RF mobile communication systems

[]] Low cost

7

Applications for SiP

KAIST

TERA Terahertz Interconnection and Package Laboratory

Source: Advanced IC Packaging (2007 Edition)

Terahertz Interconnection and Package Laboratory 8

Frequency Spectrum of Digital Clock Waveforms

Waveform and Spectrum of Clock Signal

KAIST

10

Spectrum of Wireless Mobile Communication Systems

Noise coupling path from digital circuits and RF circuits

- Noise coupling Paths:
- □ Wire, Traces, slot, and Balls
- Via transitions
- □ Return current path discontinuities
- Power and ground pane cavities
- Results:
- □ Timing and voltage margin violation at receiver
- Degradation of receiver sensitivity and BER

Signal Integrity Concerns at SiP design

- Reflections and resonances by impedance mismatches: source end termination, line impedance, and receiver end termination
- Reflections and resonances by impedance discontinuities: via, pad, wire, connectors, cables.
- □ Reflections and resonances by return current path discontinuities
- Common return current path and non-zero return current path impedance
- □ Channel loss by skin effect loss and dielectric loss

Impedance discontinuities at package

- wire, pad, via, trace, ball
- Channel of chip-to-chip link : A package is becoming a major bandwidth restraint.

Transmission Lines on SiP

- **D** Package Type : PBGA
- □ No. of Layers : 4
- □ Package Size : 23 x 23mm
- Ball Array
 - 22x22 Ball Array, 384 Balls
- Power/Ground Plane Split
 - 5 Ground / 7 Power
- Die Size
 - 5 x 5mm, 1.6 x 1.8mm
- Line Width : 60um
- □ Ball pitch, size : 1mm,0.6mm
- **Via : 300um, Drill : 150um**
- □ Finger length : 300um
- □ Finger pitch : 140~150um
- □ Finger spacing : 25um
- □ A1 placement : no routing

Insertion Loss of 900MHz Single Line

TERA

Spectrum Analyzer Measurement of P/G Plane Edge Radiation from TV2 (Center Via) with 500MHz Clock Excitation

Resonances in SiP Substrate

□ Multiple reflections

- Dever/Ground plane cavity
- Interactions between via inductance, wire inductance, and ESL of decoupling capacitors with off-chip decoupling capacitors, on-chip decoupling capacitors, and power/ground plane capacitance
- Slots

Digital noise isolation in SiP

□ Balancing

- □ Secure return current
- □ Filtering
- □ Shielding
- □ Separations

Separation Between Digital Signals and RF Signals

- A digital clock or digital I/O can be an aggressor signal to an RF signal, while an RF signal can be a victim.
- Digital clocks or I/Os should be spatially separated from RF signals.

KAIST

Terahertz Interconnection and Package Laboratory 20

Coupling Between Signal Line & Digital Clocks : T-DMB Case

Band-3

L-Band IN Band III IN AGND
KAIST

	Clock Name	Operation Voltage	Operation Frequency	
	DACBITCLK	3.3V	2MHz	
	DACSYSCLK	3.3V	12MHz	
	SPIOCLK	3.3V	16MHz	
	тск	3.3V	350kHz	
	TSCLK	3.3V	4MHz	
	TVCLK	3.3V	27MHz	
	VRCLK	3.3V	27MHz	
Tera	Terahertz Interconnection and Package Laboratory 21			

Coupling in Wires for Stacked SiP

10 chip stacked Package by KAIST

55 μm TSV diameter 150 μm Pitch

Key Technology : TSV (Through Silicon Via)

Background(1): High-frequency Channel Loss in TSV

-Significant high-frequency signal loss occur at Signal Transmission Through TSV -The signal loss through TSV is caused by substrate leakage and coupling

Loss characteristics of single-ended signal TSVs

Electrical characteristics of signal TSVs: 1) Capacitance

Coupling Issues in Stacked Dies using TSV

Crosstalk Mechanism Between TSV's

➢ Very small parasitic capacitances, C_{bump}, C_{SiO2,top}, C_{SiO2,bottom} start to be in effect over GHz range

➢ R_{via}, L_{via} have very little effect on near & far end coupling

FRΔ

Terahertz Interconnection and Package Laboratory 28

SSN coupling paths in SiP

- Wires of RX front end near digital power/ground wires
- Vias though digital power/ground planes
- Traces near digital power/ground traces
- Embedded passive components of RX front end : Balun, filter, coupler, and antenna

PDN Noise Isolation Methods

(A) <u>Chip Level</u>

- Split On-chip Metal PDN Bus
- Guard Ring (P+/ N+/ Deep-Nwell type)
- On-chip Decoupling Capacitor
- Internal Voltage Regulator

B <u>Package/PCB Level</u>

- Split Power/Ground Planes
- On-Package/PCB Decoupling Capacitor (Discrete type, Embedded type)
- Electromagnetic Band Gap (EBG)
- \rightarrow Frequency dependency of noise isolation
- \rightarrow Z21 analysis in the frequency domain

The isolation methods of each hierarchical PDN

31

Measured PDN Impedances between TSV PKG and Bond-Wire PKG

Discrete on-package de-cap provides low impedance at the low frequency range (Large Capacitance)

□ TSV reduces impedance over GHz range (Small ESL of TSV)

Characterization [3]: Chip-PKG-TSV

Cell Partitioning in EBG Structure with Embedded Film Capacitor

Fig.1. (a) The top view of the test vehicle with EBG structure. 10×10 EBG cells are arrayed in 100mm $\times 100$ mm board. The measurement port 1 and 2 locate at the center and the edge of the board, respectively.

Measured Z21, Transfer Impedance of PDN

Fig. 3. (b) The measured transfer impedance curves between port 1 and 2: TV A (dashed line); TV B (dotted line); and TV C (solid line). TV C (thin film EBG) has band-gap from 300MHz to 3.5GHz and TV B (typical EBG) has band-gap from 2.3GHz to 3.3GHz.

Measured Radiated Emission Spectrum

Summary

- Significant noise coupling occurs from digital PDN to noise sensitive RF and analog circuits on a same SiP.
- The clock frequencies and harmonic frequencies should be placed away from the RF carrier frequencies.
- Low PDN impedance should be maintained.
- PDN resonance frequencies should be placed away not only from the clock frequencies, and their harmonic frequencies, but also from RF carrier frequencies.
- Via and wire are a major noise coupling path from digital PDN to noise sensitive circuits.
- Noise coupling reduction methods including using PDN design, frequency control, filtering, separation/isolation, decoupling, shielding, and grounding techniques.
- Chip-package co-design can provide optimal and cost-effective solutions.

KAIST

37