

Trends and Requirements for System-Level Design of Signal and Power Delivery

EPEPS 2009

Future Directions in IC and Package Design Workshop

- October18, 2009
- Portland, OR
- Brad Brim, Sigrity
- bradb@sigrity.com

Agenda

- 1. Whole-package/board SI and PI
- 2. System-level analysis for SI and PI
- 3. High-speed serial channel design

High speed interfaces exacerbate design challenges

- Increasing need for chip-package-board system analysis
- Similar challenges for SSO / SSN issues for even mainstream designs
- Power and ground behavior is paramount
- Similar challenges for SerDes, PCI-X, ...

PDS trends affecting modern designs

÷.,

1 - Whole-package/board SI and PI

Whole package/board analysis

 To support system-level design the entire package/board must be characterized

or at least a large enough portion of it to include all relevant SI and PI effects

Circuit Simulation

- SPICE has long been the standard
 - RF expatriates more familiar with frequency domain
 - frequency domain more amenable to model generation
- very fast but accuracy bounded analysis
 - ideal PDN implicitly assumed, global node 0
 - designer must manually include couplings, some tools parse layout to automate

EM Simulation

- many techniques
 - integral/differential equations, time/frequency domain, planar/3D
- high accuracy but capacity bounded analysis
 - too much computer time and memory
 - can simulate portions of real boards or small/isolated channels

Analysis technologies application ranges

Technology Application Circuit Simulation circuits, systems S **3D EM Simulation** components, small circuits EMC Ρ Hybrid EM-Circuit Solvers boards, packages, systems

Hybrid solver technology challenges

- Maintain enough speed to enable whole-package/board analysis for modern designs (maximum *hours*, not *days*)
 - packages of 10(+) layers, 5000 or more pins
 - board with 20(+) layers, 10(+) ASICs/FPGAs
- Support enough "full-wave behavior" to enable accurate analysis
 - coupling and referencing within the design
 - loading exterior to the design
- Provide both frequency and time domain analysis capability
 - frequency domain provides models for subsequent system analysis
 - time domain allows IBIS drivers and arbitrary signaling conditions
- Interact effectively with circuit-only and EM-only analyses

Three classes of solvers working together

SPICE

Modified Nodal Analysis

$$\left(\begin{array}{c|c} \mathbf{Y} & \mathbf{C} \\ \hline \mathbf{C}^{\mathsf{T}} & \mathbf{Z} \end{array} \right) \left(\begin{array}{c} \mathbf{v} \\ \mathbf{i} \end{array} \right) = \left(\begin{array}{c} \mathbf{i}_{\mathsf{s}} \\ \mathbf{v}_{\mathsf{s}} \end{array} \right)$$

Hybrid Solver Technology

Combined Ckt/EM Nodal Analysis

$$\begin{bmatrix} \mathbf{Y}_{ckt} & \mathbf{Y}_{ckt-EM} \\ \mathbf{Y}_{EM-ckt} & \mathbf{Y}_{EM} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{ckt} \\ \mathbf{V}_{EM} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_{ckt} \\ \mathbf{i}_{EM} \end{bmatrix}$$

SIGRITY

Hybrid solver algorithms

1. Parse layout

- components: nets, pads, vias, wirebonds, etc
- planes
- interactions of components and planes
 - vias through multiple planes, nets crossing voids/splits, via-to-via coupling

2. Setup circuit portion

- create a virtual netlist
- determine couplings, loadings, etc
- create required component models
- 3. Setup EM portion
 - determine multi-layer topologies
 - discretize (mesh)
- 4. Setup circuit-EM interactions
 - implement connectivity
 - analytical and numerical interactions
- 5. Simulation
 - time or frequency domain composite analysis
- 6. Save, postprocess and display results
 - terminal characteristics (S/Y/Z-parameters)
 - node and plane voltages, branch currents
 - compute emissions (from branch currents and plane-edge voltages)

Two high speed diff pairs in a package

Schematic-level Circuit Modeling with Component Models

Power integrity <u>and</u> signal integrity !

Perform PDS pre-route and post-layout design tradeoffs amongst: performance-<u>cost</u>-area

Impedance (Ohm)

Predict and address EMC issues early in the product development cycle

Package performance assessment vs. extraction

Performance assessment

- dictionary definition of "assessment"
 - a judgment about something based on an understanding of the situation
- the objective
 - an indication of quality or viability of the package design
- numerical value and qualitative judgment are equally important'
 - higher level information to support decisions, shared with non- experts
- usually performed earlier in the package design flow
 - a more iterative process

Model extraction

- dictionary definition of "extraction"
 - to obtain something from a source, usually by separating it out from other material
- the objective
 - an electrical model to support subsequent analysis
- numerical value and accuracy are important
 - lower level detail, shared with simulation experts
- usually performed later in the package design flow
 - a non-iterative step, often a verification type step

Support of IC designers

To support IC power delivery network design

- IC design teams often ask for an inductance report or specify constraints for package inductance
 - inductance is for each die pin looking into the package
 - all power and ground pins are of concern
 - no return current path is specified

Net	Pin NodeName	R(mOhm)	L(nH)	
VCC	Node4004IIP13::VCC	26.4678	1.06165	
VSS	Node2391!!E60::VCC	24.833	1.04538	A COMPANY
	Node4151!!G26::VCC	25.166	1.01003	
	Node3809!!C73::VCC	67.4929	1.00087	
	Node2604!!H22::VCC	27.8522	0.986105	
	Node386711P26::VCC	21.9125	0.962073	
	Node3366!!I28::VCC	23.7276	0.954088	
	Node428411G12::VCC	23.0987	0.950023	
	Node3049!!R13::VCC	26.5991	0.948813	
	Node317211V4::VCC	21.7532	0.943962	
	Node2240!!H12::VCC	22.7824	0.881285	
	Node368111510::VCC	19.1507	0.867224	
	Node336011T38::VCC	19.5124	0.865496	
	Node3811HA79::VCC	55.9068	0.855043	
	Node4042!!P7::VCC	18.1702	0.845731	
	Node354011523::VCC	20.8255	0.839841	
	Node3312!!T44::VCC	19.4156	0.824768	
	Node2683!!H6::VCC	19.4809	0.82168	
	Paadu	Computing completed		

current must flow in loops

the inductance of an isolated current flowing from a die pin to the board is not meaningful and under-estimates real inductive parasitics

- This request is for "partial inductance"
 - cannot be measured for a package
 - DC EM analysis can compute
 - not defined for AC, full-wave EM analysis cannot compute
 - cannot be applied in isolation (currents flows in loops no "partial current)

Per-pin pwr/gnd assessment *looking into package from die-side*

- 2D plots of R and L help to quickly identify "weak" pins looking into the package
 - in this case, looking into the package from the die
- R and L distributions are similar but not identical

Per-pin pwr/gnd assessment

2-to-1 pin inductance variation identified in high speed I/O power net

Per-pin pwr/gnd assessment another example, board-side core power

- Board-side loop inductances for core power delivery pins
 - one weak pin is immediately identified with nearly 2X the inductance of other pins

Per-Pin Resistance and Inductance Assessment

- 2D and 3D geometry views help to quickly identify design fixes
 - the 'weak' pin is on the plane edge and has a high impedance series interconnect
 - this power pin is more isolated from core vias than other power pins

Hybrid solver trends

- Faster and more memory efficient
 - multi-core and high performance computing support
 - algorithm improvements for both time and frequency domains
- Application to "pre-layout" analysis
 - don't just tell me how my decap design works, tell me where to put the decaps
- Statistical behaviors
 - variations in manufacturing (spacing, width, thickness, etc)
 - component tolerances and multi-vendor sourcing
- Greater ability to handle local 3D geometries
 - more general built-in component solvers
 - coupling of plane solvers to built-in 3D solvers
 - will enhance high frequency accuracy of whole-package/board analysis
- Leadframe package design flow support and extraction
 - QFP, QFN, Amkor's "Fusion Quad"
- Tighter integration with chip-level analysis tools
 - static and dynamic power noise and timing analyses
- Expanding support for package "design" tasks and decisions
 - assessment analyses and display
 - more compact yet complete models
- Greater incorporation of emissions on design-side simulation
 - tell me where I need decaps to reduce emissions

2 - System-level analysis for SI and PI

System-level analysis issues

- Model size
- Domain partitioning
- Model connectivity

Model Size

- Broadband, many-port Touchstone data files are large
 - can be several gigabytes for whole-package/board
- Sigrity could not wait for an industry standard to suppor system-level design
 - created a proprietary format "BNP" (broadband network parameters)
 - provide free viewer and API to read (e.g. in HSPICE)
 - incorporates
 - binary storage, reduced order model (e.g. pole/zero), symmetry, etc
- IBIS committee working on standards for similar capabilities
 - Touchstone 2.0 spec now available
 - near-term enhancements
 - sparsity, port naming
 - longer term enhancements
 - binary, pole/zero

Multi-domain analysis (package/board as an example)

- 1. Characterize individually, combine with SPICE
 - circuit-level connectivity
 - please don't use language of "non-TEM" it simply is not correct
 - includes "loading" but not "coupling"
- 2. Merge physical databases together
 - very large analysis, a high price to pay
 - composite stack-up
 - includes all possible coupling/loading effects
- When is a merged analysis required?
 - rarely
 - for potential "RF-type" couplings
 - for example: a high-gain power amplifier
 - -50dB to -60dB isolation required input-to-output
 - multi-layer proximity coupling may be important

The challenge with model connectivity

Assume I have ...

- a chip/package/board system with hundreds or thousands of physical connections (pins)
- individual electrical models for each chip, package and board
 - I did not generate each of these models myself, therefore I do not have full knowledge of the pin mapping information for each model.

How do I ...

- 1. know which pins of one model to connect to the pins of another model?
- 2. reliably and in reasonable time connect these models in a netlist or a schematic?

Requirements

- Chip/package/board systems have many physical connections (pins)
 - chip-package boundary ≈ 100 5000
 package-board boundary ≈ 100 2000
- Not all electrical models can have pin-level resolution
 - models may be too large to compute, store, etc.
 - difficult to connect in EDA tools
- Adequate modeling may not be possible with net-level resolution
 - especially, if this low resolution is applied throughout the entire system
 - NOTE: "net-level resolution" groups all pins for each net at a domain boundary
- Support is required for
 - arbitrarily pin-grouped models
 - automated connection amongst models in EDA tools

System Analysis

Physical connectivity

Chip-centric model abstraction

Board-centric model abstraction

Existing Model Connection Protocols for Chip/Package/Board Analysis

Sigrity MCP (Model Connection Protocol)

- defined by Sigrity
 - publicly available definition
- objective to support chip/package/board system analysis
- presently Version 1.0
 - 1.1 available soon with user-requested pin locations
- Apache CPP
 - defined by Apache
 - definition covered under NDA
- Implemented as "headers"
- Contained within model-native comment lines
 - model could be either subcircuit or data file

A Typical Model Connection Protocol (Sigrity MCP)

[MCP Begin] * [MCP Ver] 1.1 * [Structure Type] {DIE | PKG | PCB } * [MCP Source] source text * [Coordinate Unit] unit * [Connection] connectionName partName numberPhysicalPins * [Connection Type] {DIE | PKG | PCB } * [Power Nets] * * pinName modelNodeName netName X Y* ... pinName modelNodeName netName * XV[Ground Nets] * pinName modelNodeName * netName XY* ••• * pinName modelNodeName netName X Y[Signal Nets] * * pinName modelNodeName netName XY* pinName modelNodeName netName * XY[MCP End] *

Application of an MCP model by an EDA tool

A Physical Example

 a few nets in a small 4-layer flipchip BGA package (so the MCP sections fin on a single page)

die-side solder bumps

- 3 power nets
- 1 ground net
- 2 signal nets

Model Resolution

per-pin connectivity at the chip-package boundary

- 36 physical pins

 - 16 ground nodes -
 - 2 signal nodes -
- 36 electrical nodes
 - 18 power nodes 5 VDD_1, 5 VDD_4, 8 VDDcore
 - 16 vss
 - Net_1, Net_2

per-net connectivity at the package-board boundary

-

- 36 physical pins

 - 1 ground nodes -
 - 2 signal nodes -
- 6 electrical nodes
- 3 power nodes 1 VDD_1, 1 VDD_4, 1 VDDcore
 - 1 vss
 - Net_1, Net_2

A SPICE circuit with MCP header (a mixed pin-level/net-level model)

```
.SUBCKT FlipChip pkg SPICE
  U1 E3 U1 F1 U1 F2 U1 F3 U1 G3
+
  U1 K6 U1 K7 U1 L6 U1 L7 U1 M6
+
  U1 D4 U1 D9 U1 E4 U1 E9 U1 H4 U1 H9 U1 J4 U1 J9
+
  U1 A1 U1 A12 U1 B11 U1 B2 U1 E5 U1 E8 U1 F7 U1 G6
+
             U1_H8 U1_L11 U1_L2 U1_M1 U1 M12 U1 F6
+ U1 G7 U1 H5
+ U1 L1 U1 K1
  BGA1_C1 BGA1_K6 BGA1_C10 BGA1_A1 BGA1_L2 BGA1_J3
+
*
* The following is the Sigrity MCP Section
*[MCP Begin]
*[MCP Ver] 1.0
*[Structure Type] PKG
*[MCP Source] Sigrity XtractIM 3.0.2.07061 7/18/2009
```


A SPICE circuit with MCP header (a pin-level die-side connection)

A SPICE circuit with MCP header (a pin-level die-side connection)

*[Ground Nets]

^	AL	UL_AL	VSS
*	A12	U1_A12	VSS
*	B11	U1_B11	VSS
*	в2	U1_B2	VSS
*	E5	U1_E5	VSS
*	E8	U1_E8	VSS
*	F7	U1_F7	VSS
*	Gб	U1_G6	VSS
*	G7	U1_G7	VSS
*	Н5	U1_H5	VSS
*	Н8	U1_H8	VSS
*	L11	U1_L11	VSS
*	L2	U1_L2	VSS
*	Ml	U1_M1	VSS
*	M12	U1_M12	VSS
*	Fб	U1_F6	VSS
*	[Signa	al Nets]	
*	L1	U1_L1	Net_
*	Kl	U1 K1	Net

A SPICE circuit with MCP header (a net-base pcb-side connection)

A SPICE circuit with MCP header (a net-level pcb-side connection)

- *[Ground Nets] * A1 BGA1 A1
- VSS A12 BGA1_A1 VSS * Α5 BGA1 A1 * VSS A8 BGA1 A1 VSS * BGA1_A1 VSS E1 * BGA1_A1 E12 VSS * BGA1 A1 Fб VSS * BGA1_A1 VSS * F7 * G6 BGA1_A1 VSS * G7 BGA1_A1 VSS BGA1_A1 VSS H1 * H12 BGA1_A1 VSS * М1 BGA1 A1 VSS * BGA1_A1 VSS M12 * М5 BGA1 A1 VSS * BGA1 A1 * М8 VSS *[Signal Nets] L2 BGA1 L2 Net 1 * J3 BGA1 J3 Net 2 * *

*[MCP End]

A SPICE circuit with MCP header

3 - High-speed serial channel design

Challenges for Serial Link Design

- Bit Error Rate (BER), Inter-symbol Interference (ISI), Jitter
- Crosstalk, Reflections, Loss, Dispersion

IBIS AMI concept (Algorithmic Modeling Interface)

- The Tx –to– Rx pathway is composed of 3 separate entities
 Three "decoupled" parts
 - Tx algorithmic part
 Analog channel
 Px algorithmic part
 Px algorithmic part
- Executable model delivered as a dynamically linked library (DLL)
 - Data flow between these three parts is addressed by a standardized API
 - Robust and flexible parameter passing to Tx & Rx

IBIS AMI What it *does* and *does not* do

Does

- How and what data is interchanged between EDA tool and IC AMI model
- Pass the user settable parameters to the AMI model

Does not

- Prescribe how the device must be modeled
- State and limit the parameters which can be passed
- Specify how the EDA tool should perform the simulation
 - simulator agnostic
- Stipulate how eye diagram, Bit Error Rates must be computed

Channel design requirements

Analysis Capability

- Flexible design space exploration:
 - AMI models, Jitter/Noise parameters, System components
- Techniques for crosstalk and jitter modeling
- Transient simulation of S-parameters for channel characterization
- User definable data coding
- Account for real power supply effects

Workflow

- Block wise schematic editor
 - automated model connectivity
- Access, extraction and viewing of single-ended and mixed-mode S-parameters for the whole channel or any part of it
 - layout-based package and board models
- AMI and design templates

Investigate design alternatives

Quick what-if type analysis by changing

- Jitter/Noise settings
- Equalization parameters
- Various channel component models: connectors, cables, packages, boards, ...etc
- Subcircuit parameters such as die cap, Rterm, and Tx drive level

(amiffe	
	(<u>fwd</u> 2)
	(offsetf o)
	(pre 1)
)	

Parameter	Value	Circuit File	Line
nmos_imp	25	C:\Sigrity_Fil	1
tx_rt	50	C:\Sigrity_Fil	1
tx_c_comp	1р	C:\Sigrity_Fil	1
tx_scale	1	C:\Sigrity_Fil	1

Property	Value
Number of Bits	100000
Bit Sampling Rate	32
Random Jitter (Rj) (%)	0.88
Deterministic Jitter (Dj) (%)	0
Random Noise (Rn) (mV)	1
Deterministic Noise (Dn) (mV)	0
Data Rate (Gbps)	10
Delay (ns)	0
Periodic Jitter Frequency (Hz)	1.0238e+008
Periodic Jitter Amplitude (UI)	0.043
Periodic Noise Frequency (Hz)	60
Periodic Noise Amplitude (mV)	5
Transition Jitter (%)	0
Transition Noise (mV)	0.1
DCD (%)	0.67

Isolated or coupled channels

Comprehensive jitter/noise inputs

- Random jitter/noise
- Transition jitter/noise
- Periodic jitter/noise
- Frequency offset
- Duty Cycle Distortion (DCD)

Ignore	5000		ns		
Number of	10000	10			
Bit Sampling	32				
BER Floor:	1e-16				
_Jitter					
☑ Random (Rj):	:	0.88	%		
Deterministic	(Dj):	0	%		
Noise					
🔲 Random (Rn)):	1	m∨		
Deterministic	(Dn):	0	mV		
- 🛛 XTalk					
⊙odd C	Even	OR	andom	OStatistical	

			Data Rate:	10	Gbps
Periodic			Data Pattern:		- Poly: 31
Frequency:	102380000	Hz	Datarration		
Amplitude:	0.043	- UT	Leading Bits:		
			Delay:	0	ns
Frequency Offset:	100	ppm	Data Coding:	8b10b 💌]
Transition:	0	%	Rise/Fall Time		
	0.67	- 04	Rise	20	ps
MUCD.	0.07	70	Fall	20	ps

Jitter/Noise at Rx (post processing) and at Tx input (time domain simulation)

A serial link layout

Setup of ideal/real PDN

An FFE AMI template

- Feed Forward Filter can be deployed at Tx or Rx
- Can be cascaded with stand alone CDR
- Unlimited number of taps and pre taps
- The set of weighting factors w_i are called tap coefficients
- The tap coefficients are automatically optimized.
- The optimization maximizes signal to interference ratio (SIR)

A DFE AMI template

- DFE stands for Decision
 Feedback Equalizer
- Removes ISI by adding corrections to the input based on previous decisions
- Unlimited number of taps
- The tap coefficients are optimized dynamically (blind adaptation)
- DFE has an integrated CDR
- This DFE can be cascaded with FFE for precursor ISI cancellation

$$y_n = x_n + \Sigma w_i^* d_i$$

 y_n - output
 x_n - input
 d_i - previous 'i_{th}' decision
 w_i - i_{th} tap weight

A look-ahead equalizer AMI template

54

A typical environment for channel design Sigrity Channel Designer - "SCD"

ម្រុំ SP - SP				- 8 ×
File Edit View Setup Window Help				
	"你会亲戚"的复数			
<pre>wwsP - Channel Designer : C:\Files\Channel_Designe : . \sc_example1 .xml</pre>				_ 🗆 ×
TX_PRIMARY PKG	p1 PCB Pkg	2	RX_FRIMARY AMI	
SD Eye Density C:\Files\Channel_DesignerNamples\sr yample\vecult\\I_D_box nsity.b ST Eye Density ST Eye Density	★ + ★ ♦	*vfReport View Report 1_0_report.txt	Channel Report Tue Feb 03 11:53:24 2009	
1_0_evedensity.bt + 3D Bathtub 1_0_bathtub_3d.txt	VI N1 ~ N2 (fmax) VI N1 ~ N2 (fmin) VI N1 ~ N2 (fmax) 0.4 0.3 0.2 0.1 0.1 0		General: Data Rate Number of Bits Measurement Delay Channel Coding Primary Driver No of Aggressors Characterization Data	= 3.125 G = 100468 = 5000 ns = 8b10b = Tx1 = 0 = C:\File
0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Bit Period (UI) 		Jitter Inputs: Random Jitter Noise Inputs: Random Noise Eye Measurements:	= 1 % = 1 mV

C8 with FFE AMI Model

- ffe[c8.ffe]
 - C8.ffe list explicit 4 tap coefficients
- Iffe[f4l_m.ffe]
 - F4I_m.ffe lists explicit limits for the 4 tap ffe
- HSSCDR was run with this setting
- SCD was run with IBM supplied Tx AMI model with ffe and Iffe parameters

Multi-tool waveform comparison (Using same impulse response for both tools)

C10 with FFE AMI Model

- Automatic 4 tap optimization
- Iffe[f4l_m.ffe]
 - F4I_m.ffe lists explicit limits for the 4 tap ffe
- HSSCDR was run with this setting
- SCD was run with IBM supplied Tx AMI model with ffe and Iffe parameters

Extremely similar multi-tool simulation results

Thank You!

