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Agenda

* Are we using the might of EM CAD wisely?

— Uncertainty and Variability (UV) in Signal/Power
Integrity Modeling

* Accounting for UV in SI/PI modeling and
simulation
— Interconnect electrical modeling

— Model order reduction in the presence of UV

* Closing Remarks
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Are we using the might of EM CAD for
signal integrity-aware design wisely?

Chip through sllstem 3D Broadbhand Solutions
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cCICCLrOmagrncuc modaciirig/simuiatior

pervasive in physical design and sign-off
_ analysi
Input filed for Floor planning
EDA tools / :
- Power planning
' Placement

Timing/power
library | Clock planning

Routing
Interconnect

library Physical Layout

ECOs
Kurokawa et al, Interconnect Modeling:

A Physical Design Perspective, IEEE Trans.

_ Sign-0ff analysis
Electron Devices, Sep. 2009
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Power Integrity

* Package impedance

— Design/layout-dependent

— R impacted by manufacturing tolerances
* On-chip grid

— R variability due to CMP
* On-chip decoupling

— Available C dependent on operation, V., T, ...
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Impact of Package R on IR drop(*)

Relative Impact on AV,

M3

[ 29
B2 ML M2 |

9% 1% 5o | M4
| 1%

BO)
10% |
MG
13%

Package has

the largest ==
Statistics (mQ):

relative impact =
on IR drop! & 1=263.4
& c=63.6 (24%) = M
A & Min=157.5 _
42% & Max=519.6 "
* - - @ A 10% tolerance on N
( )Sam Nassif, IBM resistivity is insignificant
compared to the - H
] NN
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Variability and Uncertainty

Top package

: Solder ball
Bottom package Salder ball

Package-on-package

15 0.8 mm pitch CSP

Eei g Multiple layers

1zt layer
2nd layer
3rd layor
4th layer
5th layer

fth layer

Pad:350 um )
Land:300 um Land:B00um
Land:300um

SourcesTNCSI
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Stacked dies

ib)

Figure 1. Various Stacked Ve Solutions for Compute Engines

Source: Future-Fab International
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Variability and Uncertainty
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Accounting for SI/Pl Modeling
and Simulation
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Interconnect Cross-Sectional
Geometry

* Parameters
— Trace width
— Trace thickness
— Trace shape
— Pitch
— Height above ground
— Surface roughness
— Substrate permittivity
— Metallization conductivity
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Derivative quantities

— Transmission-Line Modeling
e R, L, C, G (per-unit-length)
e Characteristics Impedance
e Phase constant
* Attenuation constant

— Full-wave modeling

e Metallization surface
impedance



- Transmission-Line Parameter
Extraction

mean geometry

ground plane
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Mapping between random sample and
mean geometry

Random sample

D'(r').dl’ _ dl’
[Ed=% = | ey 0= ﬁCHL’g(r’)_V

J
e V
Do(ro):m: % (1)
o) IL g(r_f)
‘D(ro)‘ (2)
Mean geometry L_ E(I‘)
Mapping relationship —
[ da 6
Dy (13)| =Q[D(Fy) - (1)
d’
.[L' g(F)
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Electric flux density computation
using solution on mean geometry

Position-dependent flux length/gap on mean
geometry: . v/ G(E)

1
G(r,) =&(ry) = — —dl =—= exact
5 b e ©
Flux length on random
P - v(r)
i_,dl'z 1 G(r) V(ro)

| —d = |,
“e(r) =V e(r) - 8([‘ ) 8([‘0) 8(!‘0)
Electric flux density on random sample using mean geometry:
G(r,)
G(r,) = V(r,)

)| =[D(r)
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Computation of capacitance of
random sample

D'(r"|dl’

C'=].
C'=| 9@) -
Creer G(ro) - V(ro)

Where J represents the Jacobian, the map between the random and mean
geometry:

D(r,)||9]d

ox oy
3= oX oX
ox oy

L dY 0Y
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Representing uncertainty using
polynomial chaos

Polynomial chaos expansion:

Orthogonal polynomials are random variables
u(r,8) = a(rw(&©))
i=0

Coefficients: functions of space

Type of polynomials depends on distribution of input random
variable

W, (&) =1, A2 dstiyition. Hagniggpopynopighchags o« groy 3

Truncated polynomial chaos expansion:
- Number of different input random variables: n
- Order of polynomials: p

ui,0)=Ya0wEe) Nr1=TP

n! p!
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Computing stochastic capacitance

Displacement of random geometry from the mean geometry:

v(r,8) =2 v (NW(£(©O)

Use relationship between random and mean flux length:
G(r,8) =G(F)-V(r,6)
Stochastic Electric Flux Density:

G(F) =
G(F) - v(F) ':"D ")

Stochastic Capacitance:

=_SCor [ MF0) VO VL) e
¢ ;CI(r)LP(f(Q)) C IS£1+ G(F) + GZ(F) w GB(F) +"'j|‘]|DodS (*)

5'()] =|Bo(P)

[ MF.0) V(T.0) V([0 5, ¢
Gr) G G¥r) )
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= Single trace over ground plane

=1

- The height of the conductor above the ground plane ‘H’ is uncertain.

Mean Geometry dimensions : L=1 um, T=0.1 um, H=0.2 um
H () = H,(1-vs(0))

-Where H, is the mean height
- ¢ is a Gaussian random variable with mean 0 and variance 1

I!ECE ILLINOIS
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Single trace over ground plane

Displacement of random geometry from the mean geometry

O v(F e) _ fo R

C= A, o g24 ]13)l5,Ja
_/
Second-order Hermite polynomial chaos for stochastic

CEEHEE +C (82 -1) O

CO:L(H((V;I(_I ] J|J|‘D d

cei{g e, o1z

< b5, i
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Single trace over ground plane

0.035 T |

Wmﬂ —FEM
0.03k / o\ o e Monte Carlo
] ,"I \
0.025} ? \H -
/ o\
/ \
0.02f of \ _
5 / °\
o .-'f “"1'
0.015¢ / -
P o
/ &N
0.01F f.& ‘}'ﬁ -
0.005 J \"\ .
] g_z"—‘faj'/ ] ] ] ﬂ-ﬂmu““_
gﬁu 280 300 320 340 360 380

Capacitance (pF/m)

Self-capacitance (pF/m)

%change Monte Carlo FEM based Approach
inH
Mean Std Mean Std
deviation deviation
10% 329.7429 11.5365 329.83 11.43
20% 331.0031 23.6053 331.48 23.31
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Single trace over ground plane

Capacitance (pF/m)

inL

Mean Std Mean Std
deviation deviation
10% 331.0028 7.26 329.26 7.48
20% 331.5143 14.92 329.26 14.96

Simulation time comparison
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'l Coupled symmetric microstrip

=1
L S
T
E=4
H
E=1

Mean Geometry dimensions : L=1 um, S =0.15 um, H=0.2 um

Self-capacitance (pF/m)

% change Monte Carlo FEM based Approach
inHand S

Mean Std Mean Std
deviation deviation
10% 368.7324 13.04 368.85 14.05
20% 370.2421 26.83 370.83 28.65
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I Microstrip with multi-dielectric

cithectrata

Self-capacitance (pF/m)

%change in Monte Carlo (10000) FEM based Approach
each layer
below
Conductor
Mean Std deviation Mean Std deviation
10% 268.94 6.76 268.01 6.26
269.46 13.56 267.82 12.56

ECE ILLIN
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Remarks

* Expedient way for handling statistical
variability in interconnect cross-sectional
geometry

— p.u.l. capacitance extraction 100x - 1000x faster
than standard Monte Carlo

* Approach independent of the field solver used
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Deterministic Model Order Reduction
Yy +SZy, +5°Pe,, )X =3B, |

org org

V = L;gx Order: N

Model Order Reduction Projection matrix F

e.g. Krylov subspace based V= EN P
methods 7=F HzorgF
Pe=F"Pe F

org

(Y + sZ + s°Pe)x = sBl
V =|"x Ordern<<N

Generalized Multiport Impedance Matrix using reduced model:

Z.(s)=sL"(Y+sZ+s°Pe)"'B

ECE ILLINOIS
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I o
Model order reduction under
uncertainty

Deterministic Reduced Order Model Stochastic Reduced Order Model

(Y +SZ + s*°Pe)x = sBl - (Y + sZ + S°Pe)X = Bl

y=L"x V=] ¥
Y =F"Y, F
Z=F"Z, F
Pe=F" Peorglf

Represent stochastic system matrices using polynomial chaos expansion:

Y. _Y+Y1 1+Yz<(2’ Z :Zo+Z£(1+Z§(z

org org

I:)eorg:PO-l-Pl 1+P2<(2’ |’:V:FO-l-Ff(l-l-Fﬁ(Z
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: Augmented Stochastic Reduced Order
Model

(Yo +Yi$1+Y ) +8(Z+ 28+ 2 4 )+
s*(Pe, + Peé; + Pe )(Xo+ X£ 1+ X £ ) =s(B+B§ +B ¢ )l

\ 4
B aba T4 Z 200l TEE e eaied fBa
Y. Yo 0 e liesize 72 @i x s PePe. @ ix =5 B |

LG @G 128 zZ 0 7 (X Pe, 0Pe, || X B,

Augmented reduced order model

(Y, + 2y + 5°PEL )Xoy =SBy |

aug aug aug
Vg = Laugxaug Order: 3n << N
H -1
- SLaug( aug tS Peaug) Baug

ECE ILLINOIS
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I - -
Computing polynomial chaos
coefficients

Coefficient matrices in polynomial chaos expansion:
- Integrate over the random space and use orthogonality of the
polynomials

/Hirgpl(gl)pZ(‘zZ)d‘zld‘zz = [[(Y+YEFY £ )0 (E)p, (Ez)dfldca
Y, = [[Yoe(E)p(E)dEHE,

[[Yasbi2(E)0AE)AEDE = [[ (Yot Y€ Y £ )E0(E)PE)dEME,
\ Y = [[Vouéor(EDpA&,)dé0E, Y,

ECE ILLINOIS




Smolyak Sparse Grid Integration

4 ] | ™
() = [[Vem(EDp0x(E)dEDE = Y W, f (u')

1-d integration rule: e.g. using chebyshev polynomial extrema

_cosr(j—-1) . _

1 1..9
" /
The case of multiple random variables:

ﬁeterministic Cartesian Product \ @olyak Sparse Grid Algorithm \

I(f):zq:f(u")w" u' =

(DCP) rule: Idea: Not all points are equally important;
|Q[ fil= (|ioa O..01% )[ ] hence, discard the least important ones

G On . . . . 19(f)= A(J,N) =
= W s S el e

i : [N e 0.l
Number of calculapons O g" = | 0 J-|il G et )

j J—N+]s|i|£J
B

ECE ILUNOIS Qlumber of calcudtions O q(logq) /
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g LOMmparison or grds senerated Using
N Tensor Product and Smolyak

Alcnri*'hM_

1

0.8
0.6
0.5r
0.4r
0.2r

D_

variable 2
O
variable 2

_D_z_
_D__q__
_D_E"_

_D_B_

e < .+ L . T - ] S - ‘
-1 -0.5 0 0.5 1 - 0.5 0 0.5

variable 1 variable 1

QUq"

g: number of points in 1-d rule
N: number of random dimensions
p: level in Smolyak algorithm

Smolyak Sparse grid (29 points)
QONP
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I
Algorithm for Stochastic MOR

e Represent uncertainty in the original -

Y :YO +Y151 +Y2€2

system matrices through polynomial org
chaos expansion 1
e Generate sparse grid points and their 8, :{gl} W, :{Wu}
corresponding weights using Smolyak Il
Sparse grid algorithm
e Compute the transformation matrix (ng +szdg +52PQIQ)X:5|309|
through MOR of individual systems ==~
corresponding to Smolyak sparse grid ! ,
ooints (Y +sZ +s°Pe)x = sBl
_gs
e Compute the stochastic transform =
matrix F=F+F¢ +FZ,
Il
 Define the stochastic reduced order 2 —
(Yaug T SZaug tS I:)eaug)xaug - SBaugl

model

ECE ILLINOIS
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1 : :
Example Study: Terminated coaxial
cable

* Air-filled coaxial cable, terminated at a resistive
load:

— L=1m, inner radius=5mm, outer radius=10mm
— FEM system (Y,Z,Pe) of order 36840
— Reduced order system of order 20.

* Randomness in two inputs
— Permittivity: uniform random variable in [3.4-4.4]

— Load resistance: uniform random variable in [25-35]
ohms

* Monte Carlo: 10201 simulations
* Smolyak: 29 points




Re{Z

in(f)}

 Mean of real part 28
of input impedance

—sc

o monte carlof]

| |
1.6 1.8 2

x 10°

e Standard deviation

of real part of input ¢ %

impedance

—Stochastic collocation
—NMonte Carlo
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Corner simulations vs. stochastic
simulations

» Standard practice to simulate corners for accounting
for variability

* Corner simulations can be ‘conservative’

* Coaxial cable example — consider corner values for
random input parameters (¢,R|)
— (3.6,25)
— (4.0,30)
— (4.4,35)

* Compare with information generated using
stochastic MOR

ECE ILLINOIS
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Corner vs. stochastic simulation

40 I T T
o
max parameter
p ;
35 . min parameter
o s o I
2 o
° F mean parameter
o
[ 5 L
0 —mm
o T i | SC
: P |
[
! po 9o —|
30 ‘,_.’ & ':.'f.) 3 -] . ()_l _.1. 58 Py
A : &1 : L ’ {5
a— ¥ 1 > o
g "‘ o l’ ° & | ' | i b o
] Y g T~ se0eld|
a00o o Al il
< 25 Poal N 1o LR " =1 86
o ) A # o o o
o & L -
e ‘55-". L] '3 - ’o &0 % (=]
J 8 fo \| [
M~ IR Iy o . Jeo o ||Y e /
B° W [ f .Y Q=¥ L] o ] I
201 N o o°'° 4 o % 95 %5 i3
] o a i (] o oO o - o ! &
o?‘-._m °°o°oo°° f__.l: oooooooooo o) | o, _g‘.'_u“
LT ¥ o y s’ " L °o°°oo.¢_ f_‘.»’)
% ! 2 ! 4] ; 4 :.:.) 0‘ 0, L
= A L Ve i
15F o L] 3 ) 5 g o bl £ 44 = | '."'(:). _ 178 Y _
o = [ Tobwy 0 "n-':’-.(-w'jt_a u o NE> SRR -l-,o
° 1 ° 2 i ([ o ° 0*-"‘5?(?:: |
o ° ° ) o ° Ll
%o ooo ®o 5 o e
Goo Sogo® %0000° i

10 | ! | | | | | !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

freq (Hz) x10°
* Corner simulation appears very conservative

* Mean parameter solution is not accurate compared to the mean
of stochastic simulation
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Remarks

* Very good accuracy obtained with 100x to
1000x improvement in computation time
compared to standard Monte Carlo.

— Stochastic MOR model appropriate for time-
domain simulations

* Stochastic MOR can have advantages over
traditional corner based simulations

* Approach independent of the deterministic
MOR method

ECE ILLINOIS




» Variability and uncertainty is not a curse

— It is an essential part of the dynamo of our evolution
toward the next, more advanced state
“Chaos is the score upon which reality is written” — Henry Miller
* We should embrace uncertainty as an
opportunity for tackling complexity

— It will make our design tools more agile, more useful,
and more conducive to complex system design flow

* |tis critical for universities to pave the way down
this path

— Our future will not be built by deterministically-
minded technologists and innovators
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