Future EM Tool Requirements for Industry-Based Hardware Designs

> Robert J. Evans, Stephen A. Scearce, Douglas B. White, Chong Ding

Cisco Systems High-Speed Design Group Research Triangle Park, North Carolina, USA

rjevans@cisco.com

Future Directions in IC and Package Design Workshop (FDIP) Portland, Oregon October 18, 2009

Agenda

- Current Business Situation
- What are our Design Challenges?
- New Technology
- Model Formats
- User Experience
- Computing Platforms
- Tool Development Challenges
- Design Services

Current Business Situation

Current Business Situation

Continually Less People, More Complex Designs.

Not as much about what we can **DO**

but what can we **NOT DO** !

5-year Radar for this talk

Our Design Challenges – Current Process

- Technology Evaluation
- Device Modeling
- Interconnect Modeling
- System-Level Modeling
- Simulation
- Measurement and Validation

System model / Interconnect Model

- Each component in the System is modeled separately
- Individual S-param model blocks are obtained after simulation
- These S-parameter blocks are interfaced to form the system model.

Library of Components

- Vias
- Traces
- Optimized layouts
- Packages
- Channels, etc.
- Covers the design space of interest
- Simulator can draw from predefined libraries to do optimization

Building a Complete Channel Model

- All of the components can be cascaded in a schematic tool, such as that available in SiSoft Quantum Channel Designer (QCD)
- A frequency sweep can be setup, and the composite channel model can be created
- QCD can perform the SerDes simulation as well

Link Speeds

Serial

- 10 Gbs links? 20 Gbs? 25 Gbs?
- Serdes designs currently aiming for 14 Gbs
- Silicon vendors now working on 20 Gbs
- 20 Gbs will be Standard in 5 years

Link Speeds

- Widebus
 - Switching speed is approaching Serdes speeds.
 - Already designing 1666MT/s DDR3.
 - 2 Gbs Advanced Memory Links soon to emerge?
 - Require 3D tools for analysis
 - Sensitive to stub lengths, layer selection, etc.

Serial Channels – Physical Demands

- 25 inch links now standard @ 7Gbs
- 20-slot chassis, 40 inch links coming soon?
- More than 2 connectors in the link?
- Division of the link? Repeaters?
- Routing Layer Control

Serial Channels – Simulation Challenges

- Large systems, many slots, many types of cards.
- Impossible to simulate ALL possible link configuration combinations for a system design. Would take 3-5 years!
- Need methods, decision criteria, for reducing the data set to be analyzed.
- Simulate a subset of link parameters representative of the entire set.

Multi-level Signaling

- At what speed does this become necessary?
- Some think 20Gbs is end of binary signaling
- How do we implement it?
- QAM protocol? 4-bits, 6 levels?
- More bits per symbol, higher Gbs w/ lower symbol rate

File Edit Verlick Herbinko, Trig Ditpley Cursos Measure Meaks Math. App Utilities Heip Buttins Data MetaAdop Samper Carls Dealer Carls

Photos: Tektronix

Link Loss Limitations

- Is there a "Magic Number" for Link Loss?
- Where insertion loss overwhelms the ability to recover the signal?
- Independent of Serdes I/Os used ?
- For current designs, any channel losing more than 20dB cannot recover the signal.

Manufacturing Tolerances

- Inclusion of Manufacturing Tolerances into modeling and simulation.
- Manufacturing tolerances become MUCH MORE significant as link speeds increase.
- Tools need to account for these tolerances in their modeling and solutions.
- Multiple variables: Dk, Df, trace geometries, dielectric and copper properties, etc. need to be accounted for.

Surface Roughness

- How do we model it accurately?
- Current tools have approximations, not very good ones, many "work-arounds".
- How big of a factor is the roughness in our sims?
- How does it affect our Line Loss??
- Need flexibility/methods to easily design-in the surface roughness parameters.
- Difficult to separate the Dk/Df material values from copper roughness, as they affect each other. A dielectric will show different Dk/Df depending upon the roughness of the copper.
- Need libraries for surface roughness factors vs. materials, processes.

Tampere University of Technology / Centre for electron Microscopy, Finland (TUT/CEM)

Edwards, Terry. Foundations for Microstrip Circuit Design. John Wiley and Sons, 1992.

Glass Weave

- Glass Weave pattern under the traces affects the signal propagation.
- We need a way to use the glass weave pattern and properties in our models and sims.

http://www.bethesignal.net/blog/B logImages/2009-04_novaSpeed.jpg, Bogatin Enterprises LLC

ORNL SEM Electromagnetic Field Dynamics inside Small Conducting Spheres, Paul G. Huray, et al, 10/07

Glass Weave

- Extraction and knowledge of how the fiber weave is located in the board vs. the traces.
- Dk, Df, fiber vs resin, orthogonal routing.
- Model the modal wave effects on differential pair phase tolerances (Intel work).
- Modeling, simulations, with the use of solid material w/ no fiber, like Teflon.

Inhomogeneous materials

- How do we handle inhomogeneous materials in the models and simulations?
- What kind of models do we use?
- How get enter the homogeneity factors into the tool? Parameters? Measurements?
- How do we predict the level of dielectric homogeneity?
- The copper squeezing out resin during lamination, viscosity effects, Impedance effects?

Port Assignments

- Port Assignments continue to be a challenge
- Need more intelligence in the port selection! Both in the Tools and Users!
 - i.e. Poorly-placed ports too close to sections of non-linear geometry produce inaccurate results.

Port Assignments

- Vendors supplying models need to better define where the ports are.
- Tools should check port assignments before/during solving, issue warnings if too close to sections of non-linear geometry.
- Tools should give feedback on quality of port assignments.

Statistical Analyses

- Dependent Variable Sensitivity Analysis
- Sensitivity analysis can indentify highest return on analysis efforts. Maybe we don't have to analyze them all?
- Reduce churn, reduce the number of variables in solutions.
- Statistical distributions of manufacturing and materials variances
 - statistical-based sweeps of parameters
- Input data set probabilistic selection.

R.J. Evans

© 2009 Cisco Systems, Inc.

Model, Simulation, Accumulation of Tolerances

- Tools should report accuracy, tolerances, with models, simulation, results.
- Need to report an overall estimate of accuracy of the total solution!
- What is the model accuracy ±%?
- What are the Serdes I/Os modeling accuracies?
- How do the tolerances accumulate across the many models and simulations?
- Reports of Eye Opening sizes, ± 5mV? ±50mV? 100mV? 5ps? 50ps?

Model, Simulation, Accumulation of Tolerances

- Are we looking for solutions below the "noise level" of our modeling and simulations?
- Don't give us 20 digits if not significant!
- I see many people arguing over 2 ps in a 2 ns budget!
- Comparison to measuring land, the survey is very accurate (inches), and reported. Why not same for our modeling and simulations?
- As customers we should hold the tool creator responsible for this.

Model Order Reduction Techniques

- Many research reports on this area simplifying the models.
- Reductions of matrices orders, etc.
- How can we "cut" the models to simplify the models? Representing only the part of the structure which interacts w/ the primary model, like the bottom ½, ¼, etc.
- Partial field-penetration models?

Backdrill Modeling

- Incorporation of backdrill parameters into the model solutions.
- Perform Before/After analyses, show the differences on plots, solutions.
- Tools can intelligently suggest layers for drill depths, grouping layers, etc.
- Tools should use "intelligent" via chopping, so we don't have to redraw via.
- Knowledge of the Cut / Do Not Cut Layers, variance between them.

Backdrill Modeling

OVERDRILL DIAMETER

Other Ideas

- How do we to handle multi-moded sections?
 - Now we avoid them, but we can't as speeds go up.
- Full EM Post-Route.
 - "Holy Grail" of EM tools
 - Tools would "do it all"
 - Extract from CAD database,
 - Use an intelligent solver
 - Pull together all parts
 - Decide which models needed
 - Simulate to get results

 $c_{11} = a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1ms}b_{ms1}$ $c_{12} = a_{11}b_{12} + a_{12}b_{22} + \dots + a_{1ms}b_{ms2}$ $c_{1p} = a_{11}b_{1p} + a_{12}b_{2p} + \dots + a_{1ms}b_{msp}$ $c_{21} = a_{21}b_{11} + a_{22}b_{21} + \dots + a_{2ms}b_{ms1}$ $c_{22} = a_{21}b_{12} + a_{22}b_{22} + \dots + a_{2ms}b_{ms2}$ $c_{2p} = a_{21}b_{1p} + a_{22}b_{2p} + \dots + a_{2ms}b_{msp}$ $c_{m1} = a_{m1}b_{11} + a_{m2}b_{21} + \dots + a_{mms}b_{ms1}$ $c_{m2} = a_{m1}b_{12} + a_{m2}b_{22} + \dots + a_{mms}b_{ms2}$ $c_{m2} = a_{m1}b_{12} + a_{m2}b_{22} + \dots + a_{mms}b_{ms2}$

Cross-compatibility

- Models usable across multiple vendor tools, for analysis, CAD design, Mechanical design, etc.
- Models should contain enough information, but not be un-necessarily big.
- Tools should have "hooks" to allow for our customization for our specific process. Use an AMI for access to features.

Cross-compatibility

- Tools should have the ability to write out data in different configurations
 - i.e. we have a 16 port extraction, but some tool like StatEye will only take *.s4p files.
 - Currently, we write a utility that can postprocess the 16 port with a user-defined format.
- Conversions should be included in the tool.
- NO post-processing!

Model Quality

- S- parameter models "still" have problems w/ passivity and causality!
- Tools should check passivity and causality before outputting model, and inform the user of the model quality.
- NO post-processing!
- Low-frequency issues in models non-causal, incorrect DC solution.

Other Model Issues

- Consistency of model boundaries and port selection
 - Where are the boundaries defined? Board level?
 - i.e. Include board in connector models?
 - What happens w/ fields at boundaries?
 - what if stackups are different?
 - Also an issue in package to board boundaries/junctions
- Use of the connector mechanical CAD models to incorporate into the board models
 - Solve the entire structure on the board.

Connector Model Reference Plane

- Must communicate with connector vendors to understand how model was created
- The endpoints of the model provided are important
- Try to model the connecting pieces accordingly

Computer Simulation Technology '08

Reference plane for 3D model highlighted above in red

New Model Formats

- Use Touchstone 2 format as a standard. Tools should be required to support this.
- Touchstone-1 files have some limitations
 - Single port reference (usually 50 ohms) for all ports.
 - Proposals for new format to allow different port references.
 - Allows inclusion if power/ground with signal nets.
 - i.e. signals reference 50 ohms, power/ground reference 1 ohm.
- IBIS AMI and Connector Modeling (ICN) support.

Material Performance Parameters & Libraries

- Standard industry-wide materials databases.
 - Copper foils and roughness
 - Dielectric materials
 - F (material, vendor, process, etc.)
- Standard materials measurement techniques. Dk/Df, etc.
 - Maybe more than one standard. Stripline, cavity resonance types.

Material	Composition	Constant (r)	Tau
Microwave Laminates		100103440	119 636
Report #03003	PTFECeramic	3.00	0,0013
Regers BOOBIN	PDECuanic	0.15	0.0025
Regers BOORD	PTERConnic	19.2	00035
Repers RT dansal 5870	PTFEX/ass Microfiber	2.33	0.0012
Rogers RT david 5380	PTFEGIan Microfiber	2.20	0.0009
Regars TMM 3	Hydrocarbox Coramic	3.27	(0.00(3)
Regars TMM 4	Hydrocorfora Caramic	4.98	0.00(3)
Reports TMM 8	Hydrocarbox Cenamic	15.00	0.0825
Regars IMM 10	Hydrocarbon Carama	9.2	0.0023
Regers 2011 (Bonding Film)	Thermoplastic	2.28	0.005

Allied Signal

Seashore Fiberglass, Inc.

Rohm & Haas

DDI

Material Performance Parameters & Libraries

- Independent verification of materials properties.
 - Some universities (MST) are currently providing this service.
- Parameters are already in proper tool formats, saves entry time/errors.
 - Tool vendors can port this data into their own preformatted libraries for the users.
- Updated monthly as part of maintenance plans.

User Experience

User Experience

Tools need to have more WIZARDS !!!

- For efficient entry of design parameters, models, materials. Design templates. Macros.
- Can easily and quickly generate most "commonly" used building blocks as well as effects.
- Via models of different configuration
 - PTH, PTH-with back drill, differentiall, blind-buried, etc.,
 - Amphenol has a spreadsheet in which we enter via dimensions, and it generates the HFSS model to be solved.
 - Ansoft is also offering a new via wizard.

User Experience

Tools need to have more WIZARDS !!!

- DC blocking caps
- Models to incorporate glass weave effects of dielectrics.
- Improved Copper roughness modeling.
- Using wizards minimizes the tedious design entry times! Less time now available w/ less people.

- Sweep Wizards variation of design parameters with minimal user interaction.
- Wizards can draw on information already available in libraries.

User Experience

Results Visualization Tools

- 3D, 4D, Full rotational, etc. (Gaming Controls?)
- Animation
- For 3D or 4D also provide easy way to crosssection into slices.
- Intuitive color coding.
- MatLab compatibility for post-processing.
- GUI Improvements human factors design.
- Improved Automated Port Selection as presented earlier

Project Size

- Always want more nodes, more ports, more tetrahedrons, finer mesh.
- Need novel solutions to make large numbers of meshes solvable.
 - Use of pre-solvers. Lump tetra together where can.
 - Solve one section, pass on the fields from one to the next.
 - Re-grid, adaptable meshing

Project Size

- Users want to do a full package 3D wave model solution, not have to cut a slice of the package.
- Time domain solvers experiences have shown that they do not have a good adaptive mesh, takes forever.

Computing Efficiency

- Run faster! More efficient algorithms!
- Simplification of models, model-order reduction, sensitivity analysis, etc. to simplify and reduce the size of the memory requirements. Also speeds up the solving.
- Problem doing die-to-die sims, using package, vias, traces, etc. models.

Computing Efficiency

- Tools can barely do one pair over the entire path
- Need to do real-world sims w/ effects of adjacent features, vias, traces, etc.
- Support of large computational machine farms.
 - high \$\$
 - shared resources amongst groups.
- Dynamically adjust ram usage (not holding all memory resources)

Tool Robustness

- No Crashes!
- Out of Memory Graceful Recoveries! Page out, notify user, etc.
- Intelligent Error Messages and Debug Assistance.
- Convergence Errors a thing of the past!
- Automatic parameter adjustments, reporting the effects, inaccuracies, etc. of the adjustments/

Good backwards compatibility, version control, etc. (H-Spice version issues!)

A problem has been detected and windows has been shut down to prevent damag to your computer.
IRQL_NOT_LESS_OR_EQUAL
If this is the first time you've seen this stop error screen, restart your computer. If this screen appears again, follow these steps:
check to make sure any new hardware or software is properly installed. If this is a new installation, ask your hardware or software manufacturer for any windows updates you wight need.
If problems continue, disable or remove any newly installed hardware or software. Disable EDOS memory options sich as caching or shudowing. If you need to use Safe mode to remove or disable components, restart your computer, press FB to select Advanced Startup options, and then select Safe Mode.
Technical information:
*** STOP: 0x0000000A (0x00000000,0x00000000,0x00000000,0x804EF13C)
seginning dump of physical memory mostic number of any sector of technical support group for further assistance.

Multi-platform support

- Windows-64-bit, 32-bit, Windows-7?
- Multi-threaded multiple processors, multiple cores
- Linux LSF Farms
- Unix
- Cross-compatible releases.
 - Set up runs on Win32, run transparently on Linux LSF

© 2009 Cisco Systems, Inc.

R.J. Evans FDIP 2009

Licensing

- Global Floating Licensing at a minimum.
- No up-charge for multi-core use on the same box.
- Unlimited licenses! Pay as we go!
 - Peak Demand licensing, billing by license usage, CPU time, etc.
 - Prevents users who hoard licenses in shared system (180 spice licenses for 3 days!).
 - Never run out of licenses, never waste idle licenses.

Tool Development Challenges

Tool Development Issues Commercial Vendors vs. University vs. In-House and Support

- Commercial tool vendors have resources for robust product development, long-term support.
 - For-profit corporations. Costs can be high.
- In-house tool development provides for fast turn-around, specialized features, lower-cost (?) tool sets.

- With the power of MatLab, we can build inhouse tools at a fraction of the cost of commercial tools.
- Can be a long-term support problem, as employees transfer jobs, lose jobs, etc.
- University tool development access to the latest theories, bleeding-edge technologies.
 - Same issues with long-term support. Students graduate – eventually!

Multi-vendor Solutions

- What happens when our process incorporates tools from multiple vendors?
- Allows the choice of the best tools, not locked into one company's offerings
- No two companies have identical needs, no "one-size-fits-all" for tools.
- Can have tool integration issues, compatibility between tool data formats.
- Can have support issues. Requires precise problem isolation and verification for each tool.

Customer Technical Education

- No \$\$ for employees to attend conferences, technical seminars!
- Tool vendors need to offer training, education seminars at customer locations.
- Training needs to be high-level technical presentations, not just sales pitches.
- Frequent webinars on technical issues, tool usage, solving real-life problems.

FDIP 2009

Commercial Vendors and University Relationships

- We see that the new breakthroughs in theories, innovations, methods, algorithms, etc. are coming from universities.
- We expect the vendors to keep up with this university work and implement the latest.
- The commercial tool world MUST support the University world!

Commercial Vendors and University Relationships

- Commercial companies get to pick the educated students, with their new ideas and skills, from the universities.
- Companies get a huge \$\$\$ benefit when they hire the grads who put these new ideas into their tools.
- The commercial companies should help fund their education and development at the schools.

Design Services

Design Services

- As headcount shrinks, the workload is only getting worse!
- Companies need more design help from vendors.
- Vendors verify our designs around their components
 - Free service part of sales / qualification efforts. Amortize the costs across the piece price.
 - We are currently doing this w/ connector, CPU, Serdes vendors.

Molex

Amphenol-TCS

Design Services

- We provide our channel model, they model and simulate w/ their parts, review results w/ our design team.
- Consulting services
 - Qualified in Tool Use
 - Tools vendors and/or individual consultants can provide serial channel modeling, simulation/verification services as a consulting business model.

Summary

Summary

- Current Business Situation
- What are our Design Challenges?
- New Technology
- Model Formats
- User Experience
- Computing Platforms
- Tool Development Challenges
- Design Services

Continually Less People, More Complex Designs. Not as much about what we can <u>DO</u> but what can we <u>NOT DO</u> !

Contributors

- Stephen Scearce
- Doug White
- Chong Ding
- Shameem Ahmed
- David Siadat
- Hari T. (Thurairajaratnam)
- Satish Pratapneni
- Yaochao Yang

• All from Cisco Systems

References

• White, Douglas B., C. Ding, S. Scearce, D. Gopinath, R.J. Evans, "An End-to-End Multi-GHz Serial Channel Design Process", *Proceedings of the IEEE 17th Topical Meeting on Electrical Performance of Electronic Packaging*, IEEE 978-1-4244-2873-1/08, San Jose, CA, October, 2008.

• Evans, Robert J., S. Scearce, M. Hsieh, "An Industry-Oriented Curriculum in the Design and Performance of Electrical Packaging and Interconnect", *Proceedings of the IEEE* 17th Topical Meeting on Electrical Performance of Electronic Packaging, IEEE 978-1-4244-2873-1/08, San Jose, CA, October, 2008.

 SiSoft; Signal Integrity Software, Inc., 6 Clock Tower Place, #250, Maynard, MA 01754; http://www.sisoft.com/index.html

 Sigrity, Inc., 4675 Stevens Creek Blvd., Suite 130, Santa Clara CA 95051, http://www.sigrity.com/index.htm

• CST Computer Simulation Technology, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, <u>http://www.cst.com/</u>

 Matlab, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, <u>http://www.mathworks.com/</u>

 Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara CA 95051., <u>http://www.agilent.com</u>.

Amphenol-TCS, Nashua, NH., <u>http://www.amphenol-tcs.com</u>

 Ansoft Corporation 225 West Station Square Drive Suite 200, Pittsburgh, PA 15219., http://www.ansoft.com

Thank You !!