Preparing for Future System Design Challenges: Advanced Technologies and Integration

Technology LEADERSHIPTRYONGRI INNOVATION

Zhen Mu Ph.D Product Marketing Manager

Topics

- \rightarrow EM research and implementation in SI tools
- → Industry trend in serial link designs
- → EDA tools need to be enhanced in
 - → supporting future design challenges
 - Creating a user-friendly environment for majority SI engineers and designers in solving complex EM problems
 - making seamless integration across all design and simulation domains

2

EM research and implementation in Signal Integrity tools

- Electromagnetic field theory and numerical method in PCB interconnect analysis
 - → From the beginning of Signal Integrity tools
 - → Example:
 - → Greenfield 2D from Quantic in late 80s
 - ➔ Interconnect modeling tool for traces on board
 - → All SI tools today include 2D field solvers for trace modeling
 - →Improvements on field solvers almost in every release of all SI tools

EM research and implementation in Signal Integrity tools

- Advanced modeling methods are introduced to SI tools as high speed simulation mythologies evolve
 - → SI tools have introduced 2.5D or 3D field solvers to analyze
 - → Complex structures on signal path and power delivery path
- → Question: is this enough for high-seed designer?

-Mentor Graphics

EM work to serve hardware designers

→ Understanding the world of high-speed digital designs

Digital designers observe / describe signal or power behavior in time domain

 \rightarrow Design goal is defined and measured in time domain

→ Signal quality, Power stability, and Timing budget

EM work to serve hardware designers

- Understanding the world of high-speed digital designs (cont')
 - → Signals are studied from Die to Die
 - Power delivery is designed from voltage source to IC components
 - EM phenomenon is "buried" in signal waveforms and voltage ripples

Courtesy image from IEEE EMC 2005 Symp. Panel

Technology

EM work to serve hardware designers

→ Simulation requirements for SI tools

- → Signal models + interconnect models
- Power source / sink models + delivery path models
- EM modeling is only part of the solution
- Advanced device models are critical to the success of entire signal path or power delivery path simulation

What is happening in high speed design world today?

- → In 2008, most of I/O interface works at the rates of 5 to 6Gbps
 - → PCI Express Gen2 at 5Gbps for computer I/O buses
 - →Optical Internetworking Forum (OIF) at 6Gbps for network communication
 - → Serial Advanced Technology Attachment (SATA) III/SAS II at 6Gbps for storage area networks
- Next-generation standards will support data rates from 8 to 11Gbps
 - → IEEE 10G Ethernet
 - → PCIe Gen3 (8.0 Gbps) for computer I/O buses

What is happening in high speed design world today?

What is happening in high speed design world today?

- ➔ In general, 40% of the signal nets on board carry signals with data rates at multiple Gbps
 - → 2.5 / 3.125Gbps signals have become part of the main stream designs
- → This is where advanced analysis capability applies

Technolo

Design flows of multi Gbps signals

➔ Traditionally, for advanced designs

- → Multiple tools are used
 - →results from these tools are pieced together
 - →the behavior of individual structures on signal or power path are carefully studied
- → What is missing today
 - The versification capability when large amount of SERDES signals present on board
 - The capability to apply EM solvers intelligently in post-route environment

Design flows of multi Gbps signals

- Existing multi-Gbps design flow
 - Design depends on the usage of various tools and combining simulation results
 - Design success heavily depends on pre-layout analysis
 - Very little is done in verification at board level
 - ➔ Effective when
 - → the number of SERDES signal nets is at minimum
 - → new interface

Design flows of multi Gbps signals

- With half of the nets on board carrying signals at the rates in Gbps range
 - → SERDES channels lost "privilege"
- → Requirements for SERDES analysis
 - Tightly integrated layout and analysis capabilities
 - ➔ Effective topology and geometry extraction
 - Robust and flexible simulation environment to simulate models from different sources
 - Efficient post-route batch mode channel analysis
 - Good model library management for design re-use

Technolog

14

Tightly integrated layout and analysis capabilities
 Easy to implement and modify constraints

- ➔ Effective topology and geometry extraction
 - → Easy to examine problematic channels
 - → Easy to identify / select geometries to be modeled using advanced EM solutions

- Robust and flexible simulation environment to simulate models from different sources
 - → Easy to simulate device models in different formats/standards (HSpice, classic IBIS, or IBIS-AMI)
 - → Efficient and accurate S-parameter simulation in time domain

Efficient post-route batch mode channel analysis
 With channel coupling effects included

→ How to make tool easy to learn and re-learn

- → Wizard driven simulation flow
- How to complex-algorithm/theory based function easy for designers who have little time to study a tool in detail

Preparing for the challenges

→ History of SI tools development shows

- Circuit simulator providers keep adding in field solutions
- Field solver providers expand solution base to include advanced device modeling
- Reason is obvious: EM modeling and circuit device simulation are not separable
- → Detailed discussions (what we have done)
 - → Worst bit sequence pattern prediction
 - Robust and efficient S-parameter simulation
 - → Power and signal co-simulation

Worst bit sequence pattern prediction

- → Channel analysis function has been integrated in SI tools since 2004
 - Using channel's Impulse Response to characterize a channel
 - Avoiding long (or impossible) Spice-like simulation to obtain reliable eye counters
- → Why need to predict worst bit sequence?
 - Channel simulation can still take long time when billions of bits are simulated
 - → It may not catch the worst case that certain bit pattern can cause

Predict Worst Bit Pattern

Can it be done?
 Yes, by the worst case searching algorithm

1,000,000 PRBS. Eye remains open

10,000 PRBS with 100-bit worst sequence. Eye closed

Technology

Through

FDIP'09 October 18, 2009

Graphics

Predict Worst Bit Pattern

→ Procedure overview

- → Impulse Reponses generation
- Channel simulation in time domain with certain number of bits
- → Statistical analysis
- Combining results from channel simulation and statistical analysis to obtain worst bit pattern
- Verifying the pattern with channel simulation

Predict Worst Bit Pattern

- Example: worst sequence solution is verified by time domain simulation
 - → Hours or days of channel simulation is not needed

C1: 97.74194p

FDIP'09 October 18, 2009

Graphics

- S-parameter simulation in time domain is important in multi-Gbps signal analysis
- There are many methods available to perform the simulation
 - Direct convolution
 - → Equivalent subcircuit
- → A new method based on complex pole fitting (CPF)
 - → S-parameters are represented in a very compact poleresidue form

→ How does it work?

Graphics

FDIP'09 October 18, 2009

Technology LEADERSHIPTHICOUGH

- Performance of the convolution, CPF, and equivalent circuit
 - → 158-port, fully populated S-matrix
 - ➔ Size of TouchStone file: 214MB

	Solution times for different methods, min							
		CPF		Equivalent circuit				
Simulator	Convolutio n-based	Fitting (one-time penalty)	Transient	Creating equivalent circuit (one-time penalty)	Parsing (each-time penalty)	Transient		
ELDO	failed	20.1	3.5	20.3	15.2	6.5		
Base simulator	failed	N/a	N/a	N/a	510.0	7.1		

FDIP'09 October 18, 2009

Technolo

→ Published example (DesignCon2006) → Single bank of FPGA, 2S130F1508, Altera Corp.

Technology

IIF Through

→ Example of large 226-port model

- → Data extraction
 - → Logarithmic scale from 1e2 to 1e8Hz then linear up to 4GHz,
 - → 425 points total, file size is about 800MB
 - → Symmetric fully populated matrix with 226x226=51,076
 - → elements, complex-value functions of frequency
- → Fitting
 - → Reading the touchstone 12 min
 - → Fitting & passivity enforcement 4.1 and 14 min respectively
 - → Resulted: 44MB pls file and 54MB sub-circuit

- Transient analysis of a test circuit
 - Only CPF and equivalent circuit can solve the problem
 - ➔ Excellent agreement between
 - solutions by CPF and equivalent circuit in ELDO and equivalent circuit in "Base" simulation

		ELDO CPF (with PLS file)	ELDO, equivalent circuit	BASESIM, equivalent circuit
Performance	Read/parse/err check	14 sec	38 min 05 sec	11 h 48 min
comparison	DC solve	6.8 sec	3 min 55 sec	4 sec
in parsing and solving	Transient	7 min 22 sec	46 min 09 sec	20 min 11 sec
	Total	7 min 43 sec	1 h 28 min 10 sec	12 h 08 min 36 sec

FDIP'09 October 18, 2009

Technology LEADERSHIPTHrough INNOVATION

- Power delivery design is important in multi-Gbps signal analysis
 - Low power components with low voltage ripple budget
- Decoupling approach and static IR-drop analysis are now available in many SI tools
- One need is to study the power noise effects on multi-Gbps signals
 - Using Power and signal co-simulation function

→ Designing power delivery network

- → Adequate DC voltage at IC power pins
 - → PDN provides sufficient power to active devices
- → Stable voltage supplies while ICs are switching

- Plane and signal via interaction affects channel behavior
 - An example of advanced models and EM solvers working together to solve multi-Gbps design problems

Diff. vias on channel

FDIP'09 October 18, 2009

Technology LEADERSHIPTHICOUGH

Extracted topology

Graphics[.]

Graphics

FDIP'09 October 18, 2009

Technology LEADERSHIPTHrough INNOVATION

- → Via effects on eyediagrams
 - Additional noises on an interested channel
 - →Caused by interactions between other signal vias through planes

Red: no via-plane interaction White: with via-plane interaction

FDIP'09 October 18, 2009

Technology LEADERSHIPTHrough INNOVATION

Summary

- EM modeling and circuit simulation are two key components of SI tools
- Industry trend in serial link designs present new challenges to SI tools
- \rightarrow SI tool providers need to be prepared in
 - supporting emerging technologies in high-speed designs
 - making complicated solving capability simple (not simpler) for majority high-speed designers
 - providing seamless integration environment across all design and simulation domains
- Mentor is open to work with universities to meet new design challenges!

Preparing for Future System Design Challenges: Advanced Technologies and Integration

Technology LEADERSHIPTRYONGRI INNOVATION

Zhen Mu Ph.D Product Marketing Manager